D. Bertrand, J. De Bruyne, P. De Harenne, L. Etienne, S. Hannaert, G. Van Beek The Arch.

Slides:



Advertisements
Similar presentations
HELYCON Hellenic Lyeum Cosmic Observatories Network Developing and Constructing An Extensive Air Shower Detector Antonis Leisos Hep2006-Ioannina Hellenic.
Advertisements

Measuring Cosmic Ray Flux with a trigger and CAMAC readout - Page 1 Connect the Fluke 415 HV supply output to the input of the voltage distribution box.
Construction and First Results of a Cosmic Ray Telescope M. P. Belhorn University of Cincinnati 12 June 2008.
1 STAR TOF Calibration. 2 Detectors TPC(TPX) - tracking MRPC TOF (TOFr) – stop time measurement pVPD/upVPD - start time measurement Particle momentum;
FToF Status Report CLAS Collaboration Meeting1 Test Results, Ongoing Work, Still To-Do, and More … FToF Progress Report CLAS Collaboration Meeting June.
1 TOF Aging Issues Pre-history Operating history Observations related to gain loss Impact on timing resolution Possible courses of action April 6, 2006.
03 Aug NP041 KOPIO Experiment Measurement of K L    Hideki Morii (Kyoto Univ.) for the KOPIO collaborations Contents Physics Motivation.
Electronics for the INO ICAL detector B.Satyanarayana Tata Institute of Fundamental Research For INO collaboration.
Design and First Results of a Cosmic Ray Telescope For Use In Testing a Focusing DIRC M. P. Belhorn University of Cincinnati The BELLE group at the University.
Tagger Electronics Part 1: tagger focal plane microscope Part 2: tagger fixed array Part 3: trigger and digitization Richard Jones, University of Connecticut.
MICE CM Berkeley 9-12 Feb February 2005 Edda Gschwendtner 1 Control/Monitoring and DAQ for PIDs Edda Gschwendtner.
Prototype string for a km3 Baikal neutrino telescope Roma International Conference on Astroparticle Physics V.Aynutdinov, INR RAS for the Baikal Collaboration.
Forward TOF Prototyping Ryan Mitchell GlueX Collaboration Meeting November 2005.
A crude (lower limit) estimation of resolution and event rate Development and Construction of an Extensive Air Shower Array in HOU Antonis Leisos, Hellenic.
TOF Electronics Qi An Fast Electronics Lab, USTC Sept. 16~17, 2002.
The Transverse detector is made of an array of 256 scintillating fibers coupled to Avalanche PhotoDiodes (APD). The small size of the fibers (5X5mm) results.
Characterization of Silicon Photomultipliers for beam loss monitors Lee Liverpool University weekly meeting.
K1.8 meeting Report from E05 group Toshiyuki Gogami 26 Dec 2014.
1 S. E. Tzamarias Hellenic Open University N eutrino E xtended S ubmarine T elescope with O ceanographic R esearch Readout Electronics DAQ & Calibration.
DAQ Map of Electronic Components L. Adeyemi, A. Camsonne, E. Fanchini, JS. Real, R. Suleiman, E. Voutier May 24, 2012.
LHCC, V0, Sept The V0 detector (Mexico Lyon collaboration)  Segmentation  Simulated performances secondaries / beam-gas  Counters design 1 /
May 31, 2008 SuperB PID sessionMarko Starič, Ljubljana Marko Starič J. Stefan Institute, Ljubljana Report on hardware tests and MC studies in Ljubljana.
14/02/2007 Paolo Walter Cattaneo 1 1.Trigger analysis 2.Muon rate 3.Q distribution 4.Baseline 5.Pulse shape 6.Z measurement 7.Att measurement OUTLINE.
P.Vincent LPNHE-Paris for H.E.S.S. collaboraton28 th ICRC - Tsukuba - Japan - 5, August 2003 Performance of the H.E.S.S. cameras Pascal Vincent (LPNHE.
Ivan Vitev & E906 Muon Identifier Status Patrick McGaughey and the muon radiography team E866 Meeting at FNAL June 20-21, 2007 Large Muon Tracker at LANSCE.
Experimental set-up Abstract Modeling of processes in the MCP PMT Timing and Cross-Talk Properties of BURLE Multi-Channel MCP PMTs S.Korpar a,b, R.Dolenec.
K.C.RAVINDRAN,GRAPES-3 EXPERIMENT,OOTY 1 Development of fast electronics for the GRAPES-3 experiment at Ooty K.C. RAVINDRAN On Behalf of GRAPES-3 Collaboration.
Scintillation hodoscope with SiPM readout for the CLAS detector S. Stepanyan (JLAB) IEEE conference, Dresden, October 21, 2008.
S-2S memo WC Toshiyuki Gogami 24Apr2015.
K2K 実験 SciBar 前置ニュートリノ検出器 久野研 田窪 洋介 読み出しシステムと時間情報の較正.
Experimental set-up for on the bench tests Abstract Modeling of processes in the MCP PMT Timing and Cross-Talk Properties of BURLE/Photonis Multi-Channel.
Tools for Discovery CAEN solutions for Diamond Detectors June 24 th 2011, Viareggio Giuliano Mini.
January 31, MICE DAQ MICE and ISIS Introduction MICE Detector Front End Electronics Software and MICE DAQ Architecture MICE Triggers Status and Schedule.
TELL1 high rate Birmingham Karim Massri University of Birmingham CEDAR WG Meeting – CERN – 26/03/2012.
1 A.Tsirigotus Hellenic Open University N eutrino E xtended S ubmarine T elescope with O ceanographic R esearch The NESTOR O.M.
Time of Flight Detectors at RHIC Time of Flight Measurements at RHIC  TOF detector as a PID devices  PHENIX-TOF and BRAHMS-TOF PHENIX Time-of-Flight.
Frank L. H. WolfsDepartment of Physics and Astronomy, University of Rochester Status of the TOF February 22, 2001 Straight-line tracking What have we learned?
DAQ Map of Electronic Components R. Suleiman February 12,
HES HKS collaboration meeting 3/11/2010 T.Gogami.
KEK Test Beam Phase I (May 2005) Makoto Yoshida Osaka Univ. MICE-FT Daresbury Aug 30th, 2005.
Magnetized hadronic calorimeter and muon veto for the K +   +  experiment L. DiLella, May 25, 2004 Purpose:  Provide pion – muon separation (muon veto)
Time and amplitude calibration of the Baikal-GVD neutrino telescope Vladimir Aynutdinov, Bair Shaybonov for Baikal collaboration S Vladimir Aynutdinov,
1 Chapter No. 17 Radiation Detection and Measurements, Glenn T. Knoll, Third edition (2000), John Willey. Measurement of Timing Properties.
Station-4 MuID System: Status Ming X. Liu Los Alamos National Lab 1/7/091E906 Collaboration Meeting.
A Brand new neutrino detector 「 SciBar 」 (2) Y. Takubo (Osaka) - Readout Electronics - Introduction Readout electronics Cosmic ray trigger modules Conclusion.
Siena, May A.Tonazzo –Performance of ATLAS MDT chambers /1 Performance of BIL tracking chambers for the ATLAS muon spectrometer A.Baroncelli,
Prototypes photon veto detectors for NA62 experiment CERN M. Raggi - INFN/Frascati for the NA62 Photon Veto Working Group LNF, RM1, NA, PI, SOFIA First.
Status Report of Tile Calorimeter at Korea Calorimeter meeting 2005/6/13 Youngdo Oh Kyungpook National University.
Tracker Neutron Detector: INFN plans CLAS12 Central Detector Meeting - Saclay 2-3 December 2009 Patrizia Rossi for the INFN groups: Genova, Laboratori.
TRIGGER & T0 for RUN 2016 V. Yurevich meeting CAEN digitizer T0.
PS Timing & Alignement Progresses 17 April 2008 LPC Clermont.
The prototype string for the km3 scale Baikal neutrino telescope VLVnT April 2008 Vladimir Aynutdinov, INR RAS for the Baikal Collaboration for.
DAQ ACQUISITION FOR THE dE/dX DETECTOR
Fabio, Francesco, Francesco and Nicola INFN and University Bari
MDT and analog FEE mass production:
PSD Front-End-Electronics A.Ivashkin, V.Marin (INR, Moscow)
Luminosity Monitor Status
PCAL Cosmic Ray Tests Progress Report C. Smith μ U V W MODULE 2
Hellenic Open University
Slot number is not critical. Traditionally, Slot 2: ADC,
Conceptual design of TOF and beam test results
Deng Ziyan Jan 10-12, 2006 BESIII Collaboration Meeting
BESIII EMC electronics
Времяпролетный детектор PANDA
Particle ID Diagnostics in the MICE Beamline
RPC Front End Electronics
Forward TOF Anton A. Izotov, PNPI.
RPC Electronics Overall system diagram Current status At detector
Digitally subtracted pulse between
PHENIX forward trigger review
Presentation transcript:

D. Bertrand, J. De Bruyne, P. De Harenne, L. Etienne, S. Hannaert, G. Van Beek The Arch

The Arch 2 The Arch Determination of the cosmic rays zenith angle distribution by timing measurements Demonstration of the principle of a TOF detector Practical for 3 rd (or 4 th ) year students Future: recording of Cherenkov rings with a multi-anode PM

The Arch 3

The Arch 4 Detector elements Based on scintillator strips of the target tracker module of the OPERA experiment; 7 m bars cut into 13 cm rods (TiO 2 on end faces); Grooves enlarged in order to put 2 wls fibers; Glued horizontally.

The Arch 5 Detector elements 8 rows of 40 rods  Ribbon length 517 cm, width 21 cm; 16 wls fibers (604 cm each); Read by Hamamatsu H6780 PM’s (gain: 10 6 ; rise time: 780 ps, transit time spead 230 ps; DC-DC converter)  PM1 & PM2

The Arch 6 Detector elements Central module: 21 × 21 × 2 cm 3 plastic scintillator read by 2 face to face PM’s (Hamamatsu R7400) gain ~ V rise time: 780 ps transit time spread: 230 ps  PM3 & PM4

The Arch 7 Calibration Time/position: 16 blue LED’s (8 on each side of the ribbon) Efficiency: 21 × 21 × 2 cm 3 plastic scintillator read by a Photonis XP3102 PM gain : 5 × V rise time: 2 ns transit time: 23.8 ns  PM5 moveable in 8 positions along the Arch corresponding to the LED0/LED7 positions

The Arch 8 Specific electronic modules TDC CAEN V1290A: 320 MHz clock + DLL with 32 delay elements  98 ps R-C delay lines  very high resolution (25 ps) but needs calibration following an internal design Hits stored in individual buffers for each channel Buffers emptied in a FIFO (32kwds of 32bits) Continuous or trigger induced reading Low threshold discriminator CAEN N417: 8 channels with separate adjustable threshold and width Width range: 15 – 800 ns Threshold range : 1.5 – 250 mV 2 channels/PM (double discrimination)

The Arch 9 TDC reading in trigger mode Window offset Match window width Extra search margin Reject margin Match window width < | window offset | ≤ 4095 clock cycles = ns Match window width + window offset ≤ 40 clock cycles = 1000 ns Memory/FIFO clock cycle : 25 ns

The Arch 10 The survey parameters LED positionsOrigin (Top of the Arch)260,3 Meas. Pos.From topRel. Dist.Timing (ns) tw. pair delay LED 08,2-252,164,837,7745,2 LED 173,0-187,364,537,8045,3 LED 2137,5-122,864,737,8545,4 LED 3202,2-58,164,537,9245,6 LED 4266,76,464,637,9045,8 LED 5331,371,064,837,6945,5 LED 6396,1135,864,437,8045,4 LED 7460,5200,2 37,9045,8 LED 8512,6252,364,837,9445,6 LED 9447,8187,577,637,8745,7 LED 10370,2109,951,637,8945,8 LED 11318,658,364,237,9945,8 LED 12254,4-5,965,037,9045,8 LED 13189,4-70,964,637,9445,8 LED 14124,8-135,565,037,9545,8 LED 1559,8-200,5 37,8145,5 Cable delaysns Cable 7441,8 Cable 7541,8 Cable 8150,0 Cable 8250,4 PM17,3 PM27,3 PM32,8 PM42,8 Cable 74+PM344,6 Cable 75+PM444,6 Cable 81+PM157,3 Cable 82+PM257,7 Cable 61 (led t)51,0 Cable 62 (led t)51,0 Cable 55 (PM5)67,2 Rod length (40 rods in 1 row)12,8 Ribbon length516,9 Fiber total length603,5 Extra fiber length (left)43,4 Extra fiber length (right)43,2 Arch diameter 398,3

The Arch 11 Width: 100 ns Position calibration (LED’s) LV0 (15 V) LV1 (15 V) LV2 (6.5 V) PM1 PM2 LED Timing unit ~20 Hz Disc LED driver TDC (chan 4) Disc (1.5 mV) Disc (~3 mV) Disc (1.5 mV) Disc (~3mV) PM1 PM2 TDC (chan 0) TDC (chan 1) TDC (trigger) ~200 ns (timing unit) 45 ns (twisted pair) + wls fiber delay 58 ns (PM) + 51 ns (LED timing) + 45 ns (twisted pair) + wls fiber delay LED positionsOrigin (Top of the Arch)260,3 Meas. Pos.From topRel. Dist.Timing (ns) tw. pair delay LED 08,2-252,164,837,7745,2 LED 173,0-187,364,537,8045,3 LED 2137,5-122,864,737,8545,4 LED 3202,2-58,164,537,9245,6 LED 4266,76,464,637,9045,8 LED 5331,371,064,837,6945,5 LED 6396,1135,864,437,8045,4 LED 7460,5200,2 37,9045,8 LED 8512,6252,364,837,9445,6 LED 9447,8187,577,637,8745,7 LED 10370,2109,951,637,8945,8 LED 11318,658,364,237,9945,8 LED 12254,4-5,965,037,9045,8 LED 13189,4-70,964,637,9445,8 LED 14124,8-135,565,037,9545,8 LED 1559,8-200,5 37,8145,5 Cable delaysns Cable 7441,8 Cable 7541,8 Cable 8150,0 Cable 8250,4 PM17,3 PM27,3 PM32,8 PM42,8 Cable 74+PM344,6 Cable 75+PM444,6 Cable 81+PM157,3 Cable 82+PM257,7 Cable 61 (led t)51,0 Cable 62 (led t)51,0 Cable 55 (PM5)67,2

The Arch 12 Patch pannels From the ArchTo the Arch On the Arch (side 1)

The Arch 13 Position calibration (LED’s) ●

The Arch 14 LED voltage / time distribution width From 0.5 V to 6.5 V

The Arch 15 LED voltage / Time delay From 0.5 V to 6.5 V

The Arch 16 Gaussian fit (typical witdth: 1.2 ns)

The Arch 17 Linear regression LED’s 0-7 v : 16.14±0.06 cm/ns LED’s 1-7v : 16.36±0.06cm/ns LED’s 8-15v : 16.30±0.04 cm/nsv : 16.32±0.03 cm/ns LED’s 1-15  6.13 ns/m

The Arch 18 Efficiency PM1/PM2 LV: 15 V Disc: 3 mV PM5 HV: 900V Disc: 30 mV NIM scaler

The Arch 19 Data acquisition LV0 (15 V) LV1 (15 V) PM1 PM2 Disc (1.5 mV) Disc (20 mV) Disc (1.5 mV) Disc (20mV ) PM3 PM4 TDC (chan 2) TDC (chan 3) TDC (trigger) ~32 ns HV0 (850 V) HV1 (850 V) PM3 PM4 ~32 ns Disc (1.5 mV) Disc (~3 mV) Disc (1.5 mV) Disc (~3mV) PM1 PM2 TDC (chan 0) TDC (chan 1) 20 ns (wls fiber: 3 m × 6.14 ns/m) 57 ns (PM1/2) – 45 ns (PM3/4) + 20 ns (wls fiber: 3 m × 6.14 ns/m) Cable delaysns Cable 7441,8 Cable 7541,8 Cable 8150,0 Cable 8250,4 PM17,3 PM27,3 PM32,8 PM42,8 Cable 74+PM344,6 Cable 75+PM444,6 Cable 81+PM157,3 Cable 82+PM257,7 Cable 61 (led t)51,0 Cable 62 (led t)51,0 Cable 55 (PM5)67,2

The Arch 20 LabVIEW acquisition system 100 µ m -2 s -1 x m 2 x 0.68 (efficiency) / 2  = 0.48 Hz ●

The Arch 21 Angular distribution

The Arch 22 TOF 6.7 ns 12 ns

The Arch 23 TOF  Momentum MeV

The Arch 24 Momentum angular dependence Left Right

The Arch 25 Momentum angular dependence < 20° 20°-40° > 40°