Improved Regrowth of Self-Aligned Ohmic Contacts for III-V FETs North American Molecular Beam Epitaxy Conference (NAMBE),8-11-2009 Mark A. Wistey Now at.

Slides:



Advertisements
Similar presentations
IEEE Device Research Conference, June , Notre Dame
Advertisements

Improved Migration-Enhanced Epitaxy for Self-Aligned InGaAs Devices Electronic Materials Conference (EMC), Mark A. Wistey University of California,
Carbon nanotube field effect transistors (CNT-FETs) have displayed exceptional electrical properties superior to the traditional MOSFET. Most of these.
High performance 110 nm InGaAs/InP DHBTs in dry-etched in-situ refractory emitter contact technology Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
2007 DRC Ultra Low Resistance Ohmic Contacts to InGaAs/InP Uttam Singisetti*, A.M. Crook, E. Lind, J.D. Zimmerman, M. A. Wistey, M.J.W. Rodwell, and A.C.
GaN based Heterojunction Bipolar Transistors
1 InGaAs/InP DHBTs demonstrating simultaneous f t / f max ~ 460/850 GHz in a refractory emitter process Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
Device Research Conference 2011
In-situ and Ex-situ Ohmic Contacts To Heavily Doped p-InGaAs TLM Fabrication by photolithography and liftoff Ir dry etched in SF 6 /Ar with Ni as etch.
1 Uttam Singisetti*, Man Hoi Wong, Jim Speck, and Umesh Mishra ECE and Materials Departments University of California, Santa Barbara, CA 2011 Device Research.
1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,
NAMBE 2010 Ashish Baraskar, UCSB 1 In-situ Iridium Refractory Ohmic Contacts to p-InGaAs Ashish Baraskar, Vibhor Jain, Evan Lobisser, Brian Thibeault,
DRC mS/  m In 0.53 Ga 0.47 As MOSFET with 5 nm channel and self-aligned epitaxial raised source/drain Uttam Singisetti*, Mark A. Wistey, Greg.
IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur.
Ashish Baraskar 1, Mark A. Wistey 3, Evan Lobisser 1, Vibhor Jain 1, Uttam Singisetti 1, Greg Burek 1, Yong Ju Lee 4, Brian Thibeault 1, Arthur Gossard.
2010 Electronic Materials Conference Ashish Baraskar June 23-25, 2010 – Notre Dame, IN 1 In-situ Ohmic Contacts to p-InGaAs Ashish Baraskar, Vibhor Jain,
1 InGaAs/InP DHBTs in a planarized, etch-back technology for base contacts Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell.
1 Interface roughness scattering in ultra-thin GaN channels in N-polar enhancement-mode GaN MISFETs Uttam Singisetti*, Man Hoi Wong, Jim Speck, and Umesh.
1 In 0.53 Ga 0.47 As MOSFETs with 5 nm channel and self-aligned source/drain by MBE regrowth Uttam Singisetti PhD Defense Aug 21, 2009 *
INTEGRATED CIRCUITS Dr. Esam Yosry Lec. #5.
MSE-630 Gallium Arsenide Semiconductors. MSE-630 Overview Compound Semiconductor Materials Interest in GaAs Physical Properties Processing Methods Applications.
ECE685 Nanoelectronics – Semiconductor Devices Lecture given by Qiliang Li.
CMOS Process Integration ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May March 25, 2004.
280 GHz f T InP DHBT with 1.2  m 2 base-emitter junction area in MBE Regrown-Emitter Technology Yun Wei*, Dennis W. Scott, Yingda Dong, Arthur C. Gossard,
MOHD YASIR M.Tech. I Semester Electronics Engg. Deptt. ZHCET, AMU.
Carrier Mobility and Velocity
Nanometer InP Electron Devices for VLSI and THz Applications
IC Process Integration
Prospects for High-Aspect-Ratio FinFETs in Low-Power Logic Mark Rodwell, Doron Elias University of California, Santa Barbara 3rd Berkeley Symposium on.
2010 IEEE Device Research Conference, June 21-23, Notre Dame, Indiana
Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and
University of California Santa Barbara Yingda Dong Molecular Beam Epitaxy of Low Resistance Polycrystalline P-Type GaSb Y. Dong, D. Scott, Y. Wei, A.C.
University of California Santa Barbara Yingda Dong Characterization of Contact Resistivity on InAs/GaSb Interface Y. Dong, D. Scott, A.C. Gossard and M.J.
1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS.
Lecture 23 OUTLINE The MOSFET (cont’d) Drain-induced effects Source/drain structure CMOS technology Reading: Pierret 19.1,19.2; Hu 6.10, 7.3 Optional Reading:
III-V/Ge Channel Engineering for Future CMOS
High Electron Mobility Transistor (HEMT)
InGaAs/InP DHBTs with Emitter and Base Defined through Electron-beam Lithography for Reduced C cb and Increased RF Cut-off Frequency Evan Lobisser 1,*,
III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti,
12 nm-Gate-Length Ultrathin-Body InGaAs/InAs MOSFETs with 8
2009 Electronic Materials Conference Ashish Baraskar June 24-26, 2009 – University Park, PA 1 High Doping Effects on In-situ and Ex-situ Ohmic Contacts.
Technology Development for InGaAs/InP-channel MOSFETs
Ultrathin InAs-Channel MOSFETs on Si Substrates Cheng-Ying Huang 1, Xinyu Bao 2, Zhiyuan Ye 2, Sanghoon Lee 1, Hanwei Chiang 1, Haoran Li 1, Varistha Chobpattana.
University of California, Santa Barbara
Suppression of Random Dopant-Induced Threshold Voltage Fluctuations in Sub-0.1μm MOSFET’s with Epitaxial and δ-Doped Channels A. Asenov and S. Saini, IEEE.
III-V CMOS: Device Design & Process Flows , fax ESSDERC Workshop on Germanium and III-V MOS Technology, Sept.
THz Bipolar Transistor Circuits: Technical Feasibility, Technology Development, Integrated Circuit Results ,
C. Kadow, J.-U. Bae, M. Dahlstrom, M. Rodwell, A. C. Gossard *University of California, Santa Barbara G. Nagy, J. Bergman, B. Brar, G. Sullivan Rockwell.
Device Research Conference 2007 Erik Lind, Adam M. Crook, Zach Griffith, and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
III-V MOS: Planar and Fin Technologies 2014 MRS Spring Meeting, April 23, San Francisco. M.J.W. Rodwell, UCSB III-V MOS: S. Lee, C.-Y. Huang, D. Elias,
Process Technologies For Sub-100-nm InP HBTs & InGaAs MOSFETs M. A. Wistey*, U. Singisetti, G. J. Burek, B. J. Thibeault, A. Baraskar, E. Lobisser, V.
Indium Phosphide and Related Materials
Uttam Singisetti. , Mark A. Wistey, Greg J. Burek, Ashish K
ISCS 2008 InGaAs MOSFET with self-aligned Source/Drain by MBE regrowth Uttam Singisetti*, Mark A. Wistey, Greg J. Burek, Erdem Arkun, Ashish K. Baraskar,
DOUBLE-GATE DEVICES AND ANALYSIS 발표자 : 이주용
Review of Semiconductor Devices
A Self-Aligned Epitaxial Regrowth Process for Sub-100-nm III-V FETs A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti,
Contact Resistance Modeling and Analysis of HEMT Devices S. H. Park, H
Lower Limits To Specific Contact Resistivity
Device Research Conference, June 19, 2012
Contact Resistance Modeling in HEMT Devices
High Transconductance Surface Channel In0. 53Ga0
Chapter 1 & Chapter 3.
Silicon Wafer cm (5’’- 8’’) mm
Lecture #25 OUTLINE Device isolation methods Electrical contacts to Si
Ultra Low Resistance Ohmic Contacts to InGaAs/InP
Record Extrinsic Transconductance (2. 45 mS/μm at VDS = 0
C. Kadow1, H.-K. Lin1, M. Dahlstrom1, M. Rodwell1,
Beyond Si MOSFETs Part 1.
Presentation transcript:

Improved Regrowth of Self-Aligned Ohmic Contacts for III-V FETs North American Molecular Beam Epitaxy Conference (NAMBE), Mark A. Wistey Now at University of Notre Dame A.K. Baraskar, U. Singisetti, G.J. Burek, M.J.W. Rodwell, A.C. Gossard University of California Santa Barbara P. McIntyre, B. Shin, E. Kim Stanford University Funding: SRC

2 Wistey, NAMBE 2009 Outline: Regrown III-V FET Contacts Motivation for Self-Aligned Regrowth Facets, Gaps, Arsenic Flux and MEE MOSFET Results Conclusion

3 Wistey, NAMBE 2009 Motivation for Regrowth: Scalable III-V FETs Classic III-V FET (details vary): Channel Bottom Barrier InAlAs Barrier Top Barrier or Oxide Gate Low doping Gap SourceDrain Large Rc { Large Area Contacts { III-V FET with Self-Aligned Regrowth: Channel In(Ga)P Etch Stop Bottom Barrier High-k Gate n+ Regrowth High Velocity Channel Implant: straggle, short channel effects Advantages of III-V’s Disadvantages of III-V’s Small R access Small Rc Self-aligned, no gaps High doping: cm -2 avoids source exhaustion 2D injection avoids source starvation Dopants active as-grown High mobility access regions High barrier Ultrathin 5nm doping layer }

4 Wistey, NAMBE 2009 MBE Regrowth: Bad at any Temperature? Low growth temperature (<400°C): – Smooth in far field – Gap near gate (“shadowing”) – No contact to channel (bad) Gate 200nm Gap Source-Drain Regrowth Source-Drain Regrowth SEMs: Uttam Singisetti Metals Channel SiO 2 high-k Gate Source-Drain Regrowth Source-Drain Regrowth Regrowth: 50nm InGaAs:Si, 5nm InAs:Si. Si=8E19/cm3, 20nm Mo, V/III=35, 0.5 µm/hr. High growth temperature (>490°C): –Selective/preferential epi on InGaAs –No gaps near gate –Rough far field –High resistance

5 Wistey, NAMBE C 490C460C SiO2 dummy gate 540C No gaps, but faceting next to gates Gap High Temperature MEE: Smooth & No Gaps Smooth regrowt h Note faceting: surface kinetics, not shadowing. In=9.7E-8, Ga=5.1E-8 Torr

Wistey NAMBE Shadowing and Facet Competition [111] [100] Fast surface diffusion = slow facet growth Slow diffusion = rapid facet growth Shen & Nishinaga, JCG 1995 [111] faster [100] faster Shen JCG 1995 says: Increased As favors [111] growth SiO 2 [111] [100] Slow diffusion = fast growth Fast surface diffusion = slow facet growth SiO 2 Good fill next to gate. But gap persists

Wistey NAMBE Gate Changes Local Kinetics [100] 2. Local enrichment of III/V ratio 4. Low-angle planes grow instead sidewall 1. Excess In & Ga don’t stick to SiO 2 Diffusion of Group III’s away from gate 3. Increased surface mobility Gate SiO 2 or SiN x

8 Wistey, NAMBE 2009 Change of Faceting by Arsenic Flux SiO 2 W Cr Increasing As flux Original Interface InAlAs markers InGaAs 0.5x x x x10 -6 Lowest arsenic flux → “rising tide fill” No gaps near gate or SiO 2 /SiNx Tunable facet competition (Torr) Growth conditions: MEE, 540*C, Ga+In BEP=1.5x10 -7 Torr, InAlAs °C MBE. InGaAs layers with increasing As fluxes, separated by InAlAs.

9 Wistey, NAMBE 2009 Control of Facets by Arsenic Flux SiO 2 W Cr Increasing As flux Original Interface InAlAs markers InGaAs 0.5x x x x10 -6 Lowest arsenic flux → “rising tide fill” No gaps near gate or SiO 2 /SiNx Tunable facet competition (Torr) Growth conditions: MEE, 540*C, Ga+In BEP=1.5x Torr, InAlAs °C MBE. InGaAs:Si layers with increasing As fluxes, separated by InAlAs. [111] [100] SiO 2 Filling [111] [100] SiO 2 [111] [100] SiO 2 Conformal Faceting

10 Wistey, NAMBE 2009 Low-As Regrowth of InGaAs and InAs 4.7 nm Al 2 0 3, 5×10 12 cm -2 pulse doping In=9.7E-8, Ga=5.1E-8 Torr SEMs: Uttam Singisetti InGaAs regrowth (top view) Low As flux good for InAs too. InAs native defects are donors. Bhargava et al, APL 1997 Reduces surface depletion. InAs regrowth InGaAsInAs No faceting near gate Smooth far-field too

11 Wistey, NAMBE 2009 InAs Source-Drain Access Resistance 4.7 nm Al 2 0 3, InAs S/D E-FET. Upper limit: R s,max = R d,max = 370 Ω−μm. Intrinsic g mi = 0.53 mS/  m g m << 1/R s ~ 3.3 mS/μm (source-limited case) ➡ Ohmic contacts no longer limit MOSFET performance. 740 Ω-µm

12 Wistey, NAMBE 2009 Conclusions Reducing As flux improves filling near gate Self-aligned regrowth: a roadmap for scalable III-V FETs – Provides III-V’s with a salicide equivalent InGaAs and relaxed InAs regrown contacts – Not limited by source 1 mA/µm – Results comparable to other III-V FETs... but now scalable

13 Wistey, NAMBE 2009 Acknowledgements Rodwell & Gossard Groups (UCSB): Uttam Singisetti, Greg Burek, Ashish Baraskar, Vibhor Jain... McIntyre Group (Stanford): Eunji Kim, Byungha Shin, Paul McIntyre Stemmer Group (UCSB): Joël Cagnon, Susanne Stemmer Palmstrøm Group (UCSB): Erdem Arkun, Chris Palmstrøm SRC/GRC funding UCSB Nanofab: Brian Thibeault, NSF