LIP & ESA 18121/04/NL/CH MarsREC An integrated tool for Mars Radiation Environment Characterization and Effects 5º longitude.

Slides:



Advertisements
Similar presentations
IHP Im Technologiepark Frankfurt (Oder) Germany IHP Im Technologiepark Frankfurt (Oder) Germany ©
Advertisements

Stefan Roesler SC-RP/CERN on behalf of the CERN-SLAC RP Collaboration
Simulation of X-ray Fluorescence and Application to Planetary Astrophysics A. Mantero, M. Bavdaz, A. Owens, A. Peacock, M. G. Pia IEEE NSS -- Portland,
Space Environments and Effects Section 7 October 2005SPENVIS-GEANT4 Space Users' Workshop Planned ESA GEANT4 Activities Petteri Nieminen, ESA/ESTEC Space.
D E S I R E Dose Estimation by Simulation of the ISS Radiation Environment Geant4 simulations of the Columbus/ISS radiation.
Overview of new work packages for the next SPENVIS phase D. Heynderickx BIRA, Ringlaan 3, B-1180 Brussel, Belgium.
B. Quaghebeur, J. Wera, (D. Heynderickx), H. De Witte BIRA, Ringlaan 3, B-1180 Brussel, Belgium H.D.R. Evans, E.J. Daly ESA/ESTEC, Keplerlaan 1, NL-2200.
A Geant4 example for radiation effects on Components
Effects of Solar Energetic Particle Events on the Martian Surface and Atmosphere F Leblanc, DA Brain, JG Luhmann, GT Delory, RA Mewaldt, CM Cohen 2004.
Susanna Guatelli Radiation Shielding Simulation For Interplanetary Manned Missions S. Guatelli 1, B. Mascialino 1, P. Nieminen 2, M.G. Pia 1 1 INFN Genova,
UTILIZING SPENVIS FOR EARTH ORBIT ENVIRONMENTS ASSESSMENTS: RADIATION EXPOSURES, SEE, and SPACECRAFT CHARGING Brandon Reddell and Bill Atwell THE BOEING.
System Software Integration Testing Mars Polar Lander Steven Ford SYSM /05/12.
PLANETOCOSMICS L. Desorgher, M. Gurtner, E.O. Flückiger, and P. Nieminen Physikalisches Institut, University of Bern ESA/ESTEC.
GRAS Validation and GEANT4 Electromagnetic Physics Parameters R. Lindberg, G. Santin; Space Environment and Effects Section, ESTEC.
IFluka : a C++ interface between Fairroot and Fluka Motivations Design The CBM case: –Geometry implementation –Settings for radiation studies –Global diagnosis.
Hadronic Models Problems, Progress and Plans Gunter Folger Geant4 Workshop, Lisbon 2006.
System for Radiation Environment characterization (fluxes, doses, dose equivalents at Earth, Moon and Mars) on hourly thru yearly time frame Example: Snapshots.
INTERNATIONAL STANDARDIZATION ORGANIZATION TECHNICAL SPECIFICATION Space Environment (Natural and Artificial) Probabilistic model of fluences and.
2001 Mars Odyssey GRS RDS 1 HEND Workshop 2002 May 20 th – 22 nd 2002 Mars Odyssey Gamma-Ray Spectrometer Richard Starr NASA/GSFC – Catholic University.
REMSIM Radiation Exposure and Mission Strategies for Interplanetary Manned Missions Susanna Guatelli, 9 th March 2004, Genova, Italy
Mars images courtesy of ESA Portal Multimedia Gallery Mars Radiation Environment Characterization Results, previous and ongoing activities Ana Keating.
Normalisation modelling sources Geant4 tutorial Paris, 4-8 June 2007 Giovanni Santin ESA / ESTEC Rhea System SA.
The PLANETOCOSMICS Geant4 application L. Desorgher Physikalisches Institut, University of Bern.
Improving the Mars Thermal 1D Model E. Millour, A Colaitis, F. Forget EXM-AMSA PM6, 7th July 2011.
C. J.Joyce 1, J. B. Blake 2, A. W. Case 3, M. Golightly 1, J. C. Kasper 3, J. Mazur 2, N. A. Schwadron 1, E. Semones 4, S. Smith 1, H. E. Spence 1, L.
Currently the Solar Energetic Particle Environment Models (SEPEM) system treats only protons within the interplanetary environment, and the shielding analysis.
Dose Predictions for Moon Astronauts Image Source: Nicholas Bachmann, Ian Rittersdorf Department of Nuclear Engineering and Radiological.
Radiation on Planetary Surfaces M. S. Clowdsley 1, G. DeAngelis 2, J. W. Wilson 1, F. F. Badavi 3, and R. C. Singleterry 1 1 NASA Langley Research Center,
Page 1 HEND science after 9 years in space. page 2 HEND/2001 Mars Odyssey HEND ( High Energy Neutron Detector ) was developed in Space Research Institute.
Regolith Materials Sheila A. Thibeault1, Richard L. Kiefer2, Myung-Hee Y. Kim2, Janet L. Chapman2, J. Adam Weakley2, and D. Ryan McGlothlin2 1NASA Langley.
FLUKA dose and fluence simulations for CBM experiment I.Kadenko, O.Bezshyyko, V.Pluyko, V.Shevchenko National Taras Shevchenko University of Kiev.
1 Organ Dose and Organ Dose Equivalent Rate Calculations from October 26, 2003 (Halloween Event) Solar Energetic Particle (SEP) Event using Earth-Moon-
Earth-Moon-Mars Radiation Environment Model N. A. Schwadron, K. Kozarev, L. Townsend, M. Desai, M. A. Dayeh, F. Cucinotta, D. Hassler, H. Spence, M. Pourars,
1 Background radiation studies in LHCb with GAUSS/Geant4 Giuseppe G. Daquino PH/SFT.
Russian Aviation and Space Agency Institute for Space Research NASA 2001 Mars Odyssey page 1 Workshop HEND Procedures of HEND data convolution for.
Daniel Matthiä(1)‏, Bernd Heber(2), Matthias Meier(1),
Notes About MARS background simulations for BTeV A Summary of how far we’ve come and how far we have to go. By DJ Wagner 9/12/98 Vanderbilt University.
Neutron measurement with nuclear emulsion Mitsu KIMURA 27th Feb 2013.
Solar Storm Radiation Model (SStoRM) Prepared by: Joshua Lande–Marlboro College, VT and Ron Turner–ANSER, 2900 South Quincy Street, Suite 800, Arlington,
Radiation protection and radiation safety issues for HIE-ISOLDE. FLUKA calculations Y. Romanets ISOLDE Workshop and Users meeting 2010 CERN, 8 December.
Dose Predictions for Moon Astronauts Image Source: Nicholas Bachmann, Ian Rittersdorf Nuclear Engineering and Radiological Sciences.
Approaches to forecasting radiation risk from Solar Energetic Particles Silvia Dalla (1), Mike Marsh (2) & Timo Laitinen (1) (1) University of Central.
1 Giuseppe G. Daquino 26 th January 2005 SoFTware Development for Experiments Group Physics Department, CERN Background radiation studies using Geant4.
Development of a Data-Based Fission Fragment Generator using the Geant4 Framework FISSION FRAGMENT GENERATOR Idaho State UniversityBrycen Wendt.
Pedro Brogueira 1, Patrícia Gonçalves 2, Ana Keating 2, Dalmiro Maia 3, Mário Pimenta 2, Bernardo Tomé 2 1 IST, Instituto Superior Técnico, 2 LIP, Laboratório.
Encontro com a Ciência e a Tecnologia em Portugal 4-7 Julho 2010.
CODES: component degradation simulation tool ESA Project 22381/09/NL/PA.
Dose Mapping for the SIXS Module and X-ray detector BepiColombo Mission 7 th GEANT4 Space Users’ Workshop August 18 – 20, 2010 Seattle - USA F. García,
KISTI 2013 달 토양에서 지하 깊이에 따른 고에너지 우주선 환경 영향 분석 Jongdae Sohn, Yu Yi Dept. of Astronomy & Space Science, Chungnam National University.
Overview on cosmic radiation at aircraft altitudes Marcin Latocha, Peter Beck, Sofia Rollet, Michael Wind, Andrea Zechner AIT – Austrian Institute of Technology.
Geant4-based tools in SPENVIS
CALIFES 2015 run preliminary results
Pulkkinen, A., M. Kuznetsova, Y. Zheng, L. Mays and A. Wold
Branch of JSC URSC – ISDE, Russian Federation
Project Structure Advanced Neutron Spectrometer on the International Space Station (ANS-ISS) Mark Christl NASA/MSFC Oct 23, 2015 Honolulu, HI 1 1.
and 9 February 2000 CHEP2000 ESA Space Environment &
Martian Radiation Env. Modelling Tools (QinetiQ)
Inter-comparison of Particle production (2)
Alexander Mishev and Ilya Usoskin
Ideas for Martian environment models and further G4 development : input from L.Desorgher Building of a user friendly and modular magnetic shielding tool.
Geant4 REMSIM application
Lunar Reconnaissance Orbiter CRaTER Critical Design Review
and 9 February 2000 CHEP2000 ESA Space Environment &
P. Nieminen, E. Daly, A. Mohammadzadeh, H.D.R. Evans, G. Santin
Recent, undergoing and planned ESA-supported activities concerning development, use and promotion of the Geant4 toolkit E. Daly, R. Nartallo, P. Nieminen.
The Hadrontherapy Geant4 advanced example
Advancement on the Analysis and Mitigation of
LIP Lisbon We would sugest to include in the Statement of Work the following points: The development of an engineering tool to extrapolate measured solar.
Xilinx Kintex7 SRAM-based FPGA
A. Mishev, I.Usoskin, S. Tuohino & A. Ibragimov
Presentation transcript:

LIP & ESA 18121/04/NL/CH MarsREC An integrated tool for Mars Radiation Environment Characterization and Effects 5º longitude

GEANT4 Users Workshop Lisbon. Portugal2 MarsREC: Motivation & Challenge Integrated simulation tool for Mars Radiation Environment and Radiation induced Effect in EEE Components. landing locations, time and season of the Martian year. Two Modules: Radiation Environment Characterization Radiation Effects Outputs: Environment description, Doses and SEU rate predictions.

GEANT4 Users Workshop Lisbon. Portugal3 Outline MarsREC : Environment Module Summary and results review MarsREC : Effect Module Description Principle of SEU rate calculation Results Mission scenario Comparisons / Verification GEANT4 problem Report Conclusions

MarsREC: Environment Module Atmosphere – MCDSoil - MOLA Radiation inputs - CREME96

GEANT4 Users Workshop Lisbon. Portugal5 GEANT4 and set-up 5º5º 5º 5º

GEANT4 Users Workshop Lisbon. Portugal6 Analysed Locations 6 different Locations North and South, East& West Solar Longitude 180º-210º Tyrrena Paterae G, H, I, J A,B,C,D,E,F Different times of the Martian day at Long. 0º: 02h, 12h, 22h

GEANT4 Users Workshop Lisbon. Portugal7 MarsREC Results Tyrrhena Paterae. Fluences *Considered event duration of 338 hours Doses due to GCR Radiation & Martian year Ambient Dose Equivalent Fluence Maps

MarsREC: Effect Module

GEANT4 Users Workshop Lisbon. Portugal9 ATMEL SRAM description The die is 6.1 x 11.2 mm 2 and the memory cell is 3.1 x 3.15  m; The device was tested with Ions, Protons and Neutrons; SEU cross sections R. Harboe-Sørensen, proceedings, RADECS 2005.

Framework Design

GEANT4 Users Workshop Lisbon. Portugal11 Principle of SEU Rate Calculation

GEANT4 Users Workshop Lisbon. Portugal12 Problem with Ions GRAS interface with to implement Geant480.p01 physics list and run ions. Run Carbon (6,12), energy distribution - GCR spectrum Using LHEP_BIC_HP physics list *** G4Exception : 007 issued by : G4HadronCrossSections GetParticleCode: unsupported particle *** Fatal Exception *** core dump *** *** G4Exception: Aborting execution *** In Hypernews - exactly the same Discussion with Vladimir Ivantchenko This bug likely connect with the fact, that for some of nucleus default cross section is not available Should be fixed in the further releases!

GEANT4 Users Workshop Lisbon. Portugal13 GCR : Mission Scenario Mission scenario -> foreseen for EXOMARS ( 2011)  slide from the ExoMars Mission-Phase A presentation by Alenia Spazio. SEU predictions for GCR Protons SEU rates : Mission Duration

GEANT4 Users Workshop Lisbon. Portugal14 Dependence on lading site Surface pressure = 189,4 Pa Surface pressure = 1004 Pa => 35% Differences in fluence In particular:  N =57%  P = 12%  E = 37%  = 26%

Comparison/Verification Evaluation MarsREC predictions in comparison with other predictions and experimental data. NOTE: Available/published results obtained in different conditions. SO : Evaluation of orders of magnitude instead of accurate validation.

GEANT4 Users Workshop Lisbon. Portugal16 Experimental Data MARIE Instrument in orbit (Mars Odyssey Orbiter) Measured doses in orbit of Mars : Dec to Oct MarsREC Predicted dose rates at the surface For one location in Tyrrhena Paterae at 12h MUT (0º)

GEANT4 Users Workshop Lisbon. Portugal17 Regolith: Backscattered Radiation MarsREC : Mars NASA : Moon NOTE: Compositions and densities slightly different MarsREC - atmospheric shielding NASA - no atmosphere. Protons Neutrons > 50 g/cm 2 = 50 g/cm 2

GEANT4 Users Workshop Lisbon. Portugal18 Comparing Dose Equivalent MarsREC fluences were converted to Dose Equivalents Using FLUKA fluence-to-dose equivalent conversion factors Considereations: MarsREC With/Without Ions MARIE predictions before flight

GEANT4 Users Workshop Lisbon. Portugal19 SEU rate : MarsREC vs CREME96 SEP and GCR protons and protons+neutrons Normalization considerations Perpendicular and Isotropic SEP

GEANT4 Users Workshop Lisbon. Portugal20 Conclusions MarsREC - integrated simulation tool for Mars Radiation Environment and Radiation induced Effect in EEE Components. comprehensive method to provide SEU Rate prediction for EEE components on Mars secondary particles generated in various shielding configurations, the Martian atmosphere and soil. Results show Very good agreement with other software predictions Landing site dependence -> important for SEE’s and Equivalent Dose Ion physics needed!