Genetic Evaluation of Lactation Persistency Estimated by Best Prediction for Ayrshire, Brown Swiss, Guernsey, and Milking Shorthorn Dairy Cattle J. B.

Slides:



Advertisements
Similar presentations
Factors affecting milk ELISA scores of cows tested for Johne’s disease H. D. Norman 1, J. R. Wright 1 *, and T. M. Byrem 2 1 Animal Improvement Programs.
Advertisements

Relationship of somatic cell score with fertility measures Poster 1390 ADSA 2001, Indiannapolis R. H. Miller 1, J. S. Clay 2, and H. D. Norman 1 1 Animal.
Genomic imputation and evaluation using 1074 high density Holstein genotypes P. M. VanRaden 1, D. J. Null 1 *, G.R. Wiggans 1, T.S. Sonstegard 2, E.E.
2002 Paul M. VanRaden and Ashley H. Sanders Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD
John B. Cole* and Paul M. VanRaden Animal Genomics and Improvement Laboratory Agricultural Research Service, USDA Beltsville, MD
Impact of selection for increased daughter fertility on productive life and culling for reproduction H. D. Norman, J. R. Wright*, R. H. Miller Animal Improvement.
Use of cow culling to help meet compliance for somatic cell standards H. D. Norman and J. R. Wright * Animal Improvement Programs Laboratory, Agricultural.
ADSA 2002 (HDN-P1) 2002 Comparison of occurrence and yields of daughters of progeny-test and proven bulls in artificial insemination and natural- service.
Changes in the use of young bulls K. M. Olson* 1, J. L. Hutchison 2, P. M. VanRaden 2, and H. D. Norman 2 1 National Association of Animal Breeders, Columbia,
2007 ADSA 2007 (1)H.D. Norman Effect of service sire and cow sire on gestation length H.D. Norman,* J.R. Wright, P.M. VanRaden, and J.B. Cole Animal Improvement.
 PTA mobility was highly correlated with udder composite.  PTA mobility showed a moderate, positive correlation with production, productive life, and.
ASAS/ADSA 2001 Conference (1) 2001 Variance of effects of lactation stage within herd by herd yield N. Gengler 1,2, B. Auvray *,1, and G.R. Wiggans 3 1.
Performance of Holsteins that originated from embryo transfer or twin births H.D. Norman, J.R. Wright* and R.L. Powell Animal Improvement Programs Laboratory,
Comparison of Holstein service-sire fertility for heifer and cow breedings with conventional and sexed semen H. D. Norman*, J. L. Hutchison, and P. M.
2002 ADSA 2002 (HDN-1) H.D. NORMAN* ( ), R.H. MILLER, P.M. V AN RADEN, and J.R. WRIGHT Animal Improvement Programs.
Norway (1) 2005 Status of Dairy Cattle Breeding in the United States Dr. H. Duane Norman Animal Improvement Programs Laboratory Agricultural Research Service,
2003 G.R. Wiggans,* P.M. VanRaden, and J.L. Edwards Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD
Breed Composition Codes for Crossbred Dairy Cattle in the United States John B. Cole,* Melvin E. Tooker, Paul M. VanRaden, and Joel H. Megonigal, Jr. Animal.
REGRESSION MODEL y ijklm = BD i + b j A j + HYS k + b dstate D l + b sstate S l + b sd (S×SD m ) + b dherd F m + b sherd G m + e ijklm, y = ME milk yield,
John B. Cole Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD Dairy Cattle Breeding.
Paul VanRaden Animal Improvement Programs Laboratory Beltsville, MD, USA 2004 Genetic Base and Trait Definition Update.
John B. Cole, Ph.D. Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD, USA The U.S. genetic.
2007 J.B. Cole Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD Overview.
Genetic correlations between first and later parity calving ease in a sire-maternal grandsire model G. R. Wiggans*, C. P. Van Tassell, J. B. Cole, and.
2005 Paul VanRaden Animal Improvement Programs Laboratory, USDA Agricultural Research Service, Beltsville, MD, USA Selection for.
2002 Paul VanRaden, Ashley Sanders, Melvin Tooker, Bob Miller, and Duane Norman Animal Improvement Programs Laboratory Agricultural Research Service, USDA,
Synchronization Effects on Parameters for Days Open M. T. Kuhn, J. L. Hutchison, and R. H. Miller* Animal Improvement Programs Laboratory, Agricultural.
Factors affecting heifer fertility in U.S. Holsteins M. T. Kuhn* and J. L. Hutchison Animal Improvement Programs Laboratory, Agricultural Research Service,
J. B. Cole * and P. M. VanRaden Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD
Paul VanRaden and Melvin Tooker* Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD 2006.
Effect of temperature and humidity on gestation length H.D. Norman, J.R. Wright,* and J.B. Cole Animal Improvement Programs Laboratory, Agricultural Research.
Interbull Meeting – Dublin 2007 Genetic Parameters of Butter Hardness Estimated by Test-Day Model Hélène Soyeurt 1,2, F. Dehareng 3, C. Bertozzi 4 & N.
John B. Cole Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD Best prediction.
2006 Mid-Atlantic Dairy Grazing Conference, 2006 (1) Is There a Need for Different Genetics in Dairy Grazing Systems? H. D. Norman, J. R. Wright, R. L.
2006 H. Duane Norman Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD
J. B. Cole 1,*, P. M. VanRaden 1, and C. M. B. Dematawewa 2 1 Animal Improvement Programs Laboratory, Agricultural Research Service, USDA, Beltsville,
XX International Grassland Conference 2005 (1) 2005 Genetic Alternatives for Dairy Producers who Practise Grazing H. D. Norman, J. R. Wright, R. L. Powell.
7 th World Congr. Genet. Appl. Livest. Prod Selection of dairy cattle for lifetime profit Paul M. VanRaden Animal Improvement Programs Laboratory.
Dr. George R. Wiggans, Ph.D. Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD, USA
J. B. Cole *, G. R. Wiggans, P. M. VanRaden, and R. H. Miller Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville,
Paul VanRaden and John Cole Animal Improvement Programs Laboratory Beltsville, MD, USA 2004 Planned Changes to Models and Trait Definitions.
Genetic and environmental factors that affect gestation length H. D. Norman, J. R. Wright, M. T. Kuhn, S. M. Hubbard,* and J. B. Cole Animal Improvement.
2007 John B. Cole USDA Animal Improvement Programs Laboratory Beltsville, MD, USA 2008 Data Collection Ratings and Best Prediction.
H. Duane Norman Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD NDHIA 2009 meeting.
2003 Paul VanRaden Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD Genetic Evaluation.
Paul VanRaden Animal Improvement Programs Laboratory Beltsville, MD, USA 2004 NAAB Update : Base Change, Udder Health, Longevity,
Multi-trait, multi-breed conception rate evaluations P. M. VanRaden 1, J. R. Wright 1 *, C. Sun 2, J. L. Hutchison 1 and M. E. Tooker 1 1 Animal Genomics.
ADSA 2002 (RHM-P1) 2002 R.H. Miller, ,1 H.D. Norman, 1 and J.S. Clay 2 1 Animal Improvement Programs Laboratory, Agricultural Research Service, USDA,
Multibreed Genomic Evaluation Using Purebred Dairy Cattle K. M. Olson* 1 and P. M. VanRaden 2 1 Department of Dairy Science Virginia Polytechnic and State.
2005 Paul VanRaden and Mel Tooker Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD Genetic.
H.D. Norman* J.R. Wright, P.M. VanRaden, and M.T. Kuhn Animal Improvement Programs Laboratory Agricultural.
2006 Paul VanRaden Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD Predicting Genetic.
2004 P.M. VanRaden, M.E. Tooker*, and J.B. Cole Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD
2001 ADSA Indianapolis 2001 (1) Heterosis and Breed Differences for Yield and Somatic Cell Scores of US Dairy Cattle in the 1990’s. PAUL VANRADEN Animal.
H. Duane Norman Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD Dairy Cattle Reproductive.
Lactation Number Effects on the Genetic Variability of the Stearoyl Coenzyme-A Desaturase 9 Activity Estimated by Test-Day Model V. M.-R. Arnould 1, N.
2007 Paul VanRaden Animal Improvement Programs Laboratory, USDA Agricultural Research Service, Beltsville, MD, USA 2007 Genetic evaluation.
CRI – Spanish update (1) 2010 Status of Dairy Cattle Breeding in the United States Dr. H. Duane Norman Animal Improvement Programs Laboratory Agricultural.
2001 ASAS/ADSA 2001 Conference (1) Simultaneous accounting for heterogeneity of (co)variance components in genetic evaluation of type traits N. Gengler.
2007 Paul VanRaden, Jan Wright, Gary Fok, and Mel Tooker Animal Genomics and Improvement Lab Agricultural Research Service, USDA Beltsville, MD, USA
2005 P.M. VanRaden and M.E. Tooker* Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD Effect.
Correlations Among Measures of Dairy Cattle Fertility and Longevity
Percent of total breedings
Abstr. M4 Merit of obtaining genetic evaluations of milk yield for each parity on Holstein bulls H.D. Norman, J.R. Wright,* R.L. Powell, and P.M. VanRaden.
Effectiveness of genetic evaluations in predicting daughter performance in individual herds H. D. Norman 1, J. R. Wright 1*, C. D. Dechow 2 and R. C.
Measures of Fertility: Heritabilities and Genetic Correlations
Genetic Evaluation of Milking Speed for Brown Swiss Dairy Cattle
Multiplicative Factors
3Canadian Dairy Network, Guelph, ON Canada
Relationship of gestation length to stillbirth
Presentation transcript:

Genetic Evaluation of Lactation Persistency Estimated by Best Prediction for Ayrshire, Brown Swiss, Guernsey, and Milking Shorthorn Dairy Cattle J. B. Cole and D. J. Null* Animal Improvement Programs Laboratory, Agricultural Research Service, USDA, Beltsville, MD INTRODUCTION Cows with high persistency tend to milk less than expected at the beginning of lactation and more than expected at the end. Animals with improved persistency also require less energy in early lactation, allowing greater use of cheap roughage (Sölkner and Fuchs, 1987). The value of persistency increases with lactation length because cows with positive persistencies have higher total yields than cows with average or negative persistencies. OBJECTIVE Calculate (co)variance components and breeding values for best predictions of persistency of milk (M), fat (F), protein (P), and SCS in Ayrshire (AY), Brown Swiss (BS), Guernsey (GU), and Milking Shorthorn (MS) dairy cattle. DATA & METHODS (cont.) The number of active AI sires receiving evaluations for persistency ranged from 4 (MS) to 39 (BS). Table 1. Summary statistics of sire evaluations for persistency of milk, fat, protein, and SCS. RESULTS (cont.) Sire EBV for persistency of M, F, and P were similar and ranged from to 0.67 for M. EBV for persistency of SCS ranged from to Regressions of sire EBV on birth year were near zero (P < ) but in favorable directions for all breeds and traits. Genetic correlations among yield and persistency were low and ranged from (r SCS, PM) to 0.09 (r FAT, PP) (Table 3). Genetic correlations of persistency of M, F, and P with SCS yield were moderate and negative for all breeds (Table 3). Table 3. Genetic correlations of persistency for milk (PM), fat (PF), protein (PP), and SCS (PS) with 305-d milk, fat, protein, and SCS for Brown Swiss. Genetic correlations among PM, PF, and PP were large for all breeds (Table 4). PS was negatively correlated with yield persistencies. RESULTS (cont.) Table 4. Genetic (above diagonal) and phenotypic (below diagonal) correlations among persistency traits in Brown Swiss. CONCLUSIONS As expected, selection for improved yield has not affected persistency of yield. Persistency of SCS decreases as persistency of yield increases. Heritabilities and repeatabilities were similar to those previously reported for US Holsteins with the exception of SCS, which were larger in the colored breeds. DATA & METHODS Persistency was calculated as a function of a trait-specific standard lactation curve and the linear regression of a cow’s test day deviations on days in milk (Cole and VanRaden, 2006). Persistency is phenotypically independent of yield and has a variance of 1. Available data ranged from 27,964 (MS) to 159,898 (BS) records for cows calving since REFERENCES Cole, J.B. and P.M. VanRaden Genetic evaluation and best prediction of lactation persistency. J. Dairy Sci. 89: Sölkner, J., and W. Fuchs A comparison of different measures of persistency with special respect to variation of test-day milk yields. Livest. Prod. Sci. 16: Abstr. M52 TraitNMeanSDMinimumMaximum M F P SCS RESULTS Results from the four breeds were similar, so only Brown Swiss results are presented. Heritabilities ranged from 0.06 for SCS to 0.10 for M (Table 2). Repeatabilities ranged from 0.12 for SCS to 0.19 for M (Table 2). Table 2. Heritabilities, repeatabilities for persistency traits in Brown Swiss. MilkFatProteinSCS PM PF PP PS MFPSCS Heritabilities Repeatabilities TraitMFPSCS M F P SCS