1 Inverter Layout. 2 TX Gate: Layout VDD VSS VO Vi C CCC For data path structure P+ N+

Slides:



Advertisements
Similar presentations
Digital Integrated Circuits© Prentice Hall 1995 Combinational Logic COMBINATIONAL LOGIC.
Advertisements

COMBINATIONAL LOGIC [Adapted from Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.]
CMOS Circuits.
Static CMOS Circuits.
CMOS Logic Circuits.
Static CMOS Gates Jack Ou, Ph.D.
ECE543 Intro to Digital Systems Lecture 36 Propagation Delay in Counter Designs II 04/26/2013.
© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Digital Fundamentals with PLD Programming.
ECE C03 Lecture 81 Lecture 8 Memory Elements and Clocking Hai Zhou ECE 303 Advanced Digital Design Spring 2002.
Latches CS370 –Spring 2003 Section 4-2 Mano & Kime.
EET 1131 Unit 10 Flip-Flops and Registers
© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Digital Fundamentals Tenth Edition Floyd.
Elettronica T A.A Digital Integrated Circuits © Prentice Hall 2003 Inverter CMOS INVERTER.
Chapter 6 –Selected Design Topics Part 2 – Propagation Delay and Timing Logic and Computer Design Fundamentals.
Ch 11 Bipolar Transistors and Digital Circuits
Electrical and Timing Characteristics of Standard Logic Gates (Lecture #2) ECE 331 – Digital System Design.
Microelectronic Circuits, Sixth Edition Sedra/Smith Copyright © 2010 by Oxford University Press, Inc. C H A P T E R 13 CMOS Digital Logic Circuits.
Voltage Transfer Characteristic for TTL
Designing Combinational Logic Circuits: Part2 Alternative Logic Forms:
Viterbi Decoder: Presentation #10 M1 Overall Project Objective: Design a high speed Viterbi Decoder Stage 10: 5 th April Final Design Corrections.
© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Digital Fundamentals Tenth Edition Floyd.
ECES 352 Winter 2007Ch 11 Bipolar Digital Pt. 21 Simplified Transistor - Transistor Logic (TTL) *Transistor - Transistor Logic (TTL) *Simplified form of.
1 4-BIT ARITHMETIC LOGIC UNIT Motorola MC54/74F181 Heungyoun Kim Lu Gao Jun Li Advisor: Dr. David W. Parent DATE: 12/05/2005.
1 DESIGN OF 4-BIT ALU Fairchild Semiconductor DM74LS181 Prashanth Kommuri Akram Khan Gopinath Akkinepally Advisor: Dr. David W. Parent 5 December 2005.
4-bit ALU Yamei Li, Yuping Liang Hua Qu, James Hsu
1 DESIGN OF 8-BIT ALU Vijigish Lella Harish Gogineni Bangar Raju Singaraju Advisor: Dr. David W. Parent 8 May 2006.
1 4 BIT Arithmetic Logic Unit (ALU) Branson Ngo Vincent Lam Mili Daftary Bhavin Khatri Advisor: Dave Parent DATE: 05/17/04.
Electrical and Timing Characteristics of Standard Logic Gates (Lecture #2) ECE 301 – Digital Electronics.
Digital CMOS Logic Circuits
Prof. John Nestor ECE Department Lafayette College Easton, Pennsylvania ECE VLSI Circuit Design Lecture 8 - Comb. Logic.
Digital Integrated Circuits© Prentice Hall 1995 Combinational Logic COMBINATIONAL LOGIC.
The CMOS Inverter Slides adapted from:
MOS Inverter: Static Characteristics
INTEGRATED CIRCUIT LOGIC FAMILY
CH111 Chapter 11 CMOS and TTL Circuits By Taweesak Reungpeerakul.
Gheorghe M. Ştefan
Digital Integrated Circuits© Prentice Hall 1995 Inverter THE INVERTERS.
Ch 10 MOSFETs and MOS Digital Circuits
CMOS DYNAMIC LOGIC DESIGN
Chapter 07 Electronic Analysis of CMOS Logic Gates
Electrical Characteristics Practice Problems 1 Last Mod January 2008  Paul R. Godin with Solutions.
Complementary CMOS Logic Style Construction (cont.) Digital Integrated Circuits© Prentice Hall 1995 Introduction.
1.0 INTRODUCTION  Characteristics of the active electronic components that determine the internal construction and operation of electronic circuitry.
CHAPTER 3 Sequential Logic/ Circuits.  Concept of Sequential Logic  Latch and Flip-flops (FFs)  Shift Registers and Application  Counters (Types,
Introduction to CMOS VLSI Design Lecture 5: Logical Effort GRECO-CIn-UFPE Harvey Mudd College Spring 2004.
Designing of a D Flip-Flop Final Project ECE 491.
ECE442: Digital ElectronicsSpring 2008, CSUN, Zahid Static CMOS Logic ECE442: Digital Electronics.
The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering ECE122 – 30 Lab 2: CMOS Design.
Digital Integrated Circuits A Design Perspective
1. Digital cmos.2 10/15 Figure 10.1 Digital IC technologies and logic-circuit families. Digital IC Technologies CMOS & Pass Transistor Logic dominate.
STICK DIAGRAM EMT251. Schematic vs Layout In Out V DD GND Inverter circuit.
Sp09 CMPEN 411 L18 S.1 CMPEN 411 VLSI Digital Circuits Spring 2009 Lecture 16: Static Sequential Circuits [Adapted from Rabaey’s Digital Integrated Circuits,
ECE C03 Lecture 81 Lecture 8 Memory Elements and Clocking Hai Zhou ECE 303 Advanced Digital Design Spring 2002.
© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Digital Logic Design Dr. Oliver Faust.
Solid-State Devices & Circuits
Static CMOS Logic Seating chart updates
CH31 Chapter 3 Logic Gates By Taweesak Reungpeerakul.
The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering ECE122 – 30 Lab 2: NAND gate.
EE415 VLSI Design. Read 4.1, 4.2 COMBINATIONAL LOGIC.
Dynamic Logic.
1 Dynamic CMOS Chapter 9 of Textbook. 2 Dynamic CMOS  In static circuits at every point in time (except when switching) the output is connected to either.
EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003.
Digital Logic Inverter Clasificacion de Circuitos y frecuencia maxima.
Flip Flops Engr. Micaela Renee Bernardo. A latch is a temporary storage device that has two stable states (bistable). It is a basic form of memory. Latches.
Physical Properties of Logic Devices Technician Series Created Mar
© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Digital Fundamentals Tenth Edition Floyd.
The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering ECE122 – 30 Lab 2: NAND gate.
5x5 Pixel Array Status 28 January 2004
COMBINATIONAL LOGIC DESIGN
Presentation transcript:

1 Inverter Layout

2 TX Gate: Layout VDD VSS VO Vi C CCC For data path structure P+ N+

3 Transmission Gate Layout

4 NAND Gates: Layout Layout Transistors in Series Transistors in Parallel

5 NAND Gates: Layout A B X Metal II Via VDD GND

6 NAND Gate Layout

7 Simulation results of CMOS 2-input NAND gate DC characteristics Active area Total area Static curren t V OH V OL V IH V IL NM L NM H um um volts 0 volt1.42 volts 0.87 volts 1.88 volts AC characteristics t PLH min t PHL min t P min t PLH max t PHL max t P max t r min t f min t r max t f max Averag e power Peak Power 0.15 ns 0.03 ns 0.09 ns 0.18 ns 0.05 ns ns 0.15 ns 0.14 ns ns 0.15 ns 0.43 mw 0.5 mw

8 simulation waveforms of NAND gate

9 NOR Gate: Layout AB X V DD GND

10 NOR Gate Layout

11 Waveform of the CMOS 2-input NOR gate.

12 DC characteristics Active area Total area Static current V OH V OL V IH V IL NM L NM H um um volts0 volts1.57 volts 0.95 volts 1.73 volts AC characteristics t PLH min t PHL min t P min t PLH max t PHL max t P max t r min t f min t r max t f max Average power Peak Power 0.18 ns 0.05 ns ns 0.2 ns 0.07 ns ns 0.2 ns 0.15 ns 0.24 ns 0.16 ns 0.45 mw0.6 mw Simulation results of CMOS 2-input NOR gate

13 Analysis and Design of Complex Gate A B C D E F VDD GND OUT N-well Analysis 1. Construct the schematic 2. Determine the logic function. 3. Determine transistor sizes. 4. Determine the input pattern to cause slowest and fastest operations. 5. Determine the worst case rise delay (t PLH )and fall delay (t PHL ) 6. Determine the best case rise and fall delays.

14 DFF Layout

15 Fundamental Cell Design General Considerations  Static logic;  Select aspect ratio of gates for example:

16 Cell Simulation: 2-input NAND gate

17 2-input NAND gate, Layout

18 2-input NAND gate, Simulation

19 2-input NAND gate, DC Characteristics Active area (um 2 ) Total area (um 2 ) Static current (uA) V OH (V) V OL (V) V IH (V) V IL (V) NM H (V) NM L (V)

20 2-input NAND gate, AC Characteristics t PLH min (ns) t PHL min (ns) t P min (ns) t PLH max (ns) t PHL max (ns) t P max (ns) t r min (ns) t f min (ns) t r max (ns) t f max (ns) Average power (mW) Peak power (mW)

21 2-input AND gate

22 2-input AND gate, layout

23 2-input AND gate, simulation

24 2-input AND gate, DC Characteristics Active area (um 2 ) Total area (um 2 ) Static curren t(uA) V OH (V) V OL (V) V IH (V) V IL (V) NM H (V) NM L (V)

25 2-input AND gate, Ac Characteristics t PLH min (ns) t PHL min (ns) t P min (ns) t PLH max (ns) t PHL max (ns) t P max (ns) t r min (ns) t f min (ns) t r max (ns) t f max (ns) Aver. power (mW) Peak power (mW)

26 3-input NAND gate, Design

27 3-input NAND gate. layout

28 3-input NAND gate, simulation

29 3-input NAND gate, DC Characteristics Active area (um 2 ) Total area (um 2 ) Static current (uA) V OH (V) V OL (V) V IH (V) V IL (V) NM H (V) NM L (V)

30 3-input NAND gate, AC Characteristics t PLH min (ns) t PHL min (ns) t P min (ns) t PLH max ns t PHL max (ns) t P max (ns) t r min ns t f min (ns) t r max (ns) t f max (ns) Av. powe r (mW) Peak power (mW)

31 3-input AND gate, Design

32 3-input AND gate, layout

33 3-input AND gate, simulation

34 3-input AND gate, Dc Characteristics Active area (um 2 ) Total area (um 2 ) Static current (uA) V OH (V) V OL (V) V IH (V) V IL (V) NM H (V) NM L (V)

35 3-input AND gate, Ac Characteristics t PLH min (ns) t PHL min (ns) t P min (ns) t PLH max (ns) t PHL max (ns) t P max (ns) t r min (ns) t f min (ns) t r max (ns) t f max (ns) Average power (mW) Peak power (mW)

36 2-input NOR gate, Design

37 2-input NOR gate, Layout

38 2-input NOR gate, Simulation

39 2-input NOR gate, DC Characteristics Active area (um 2 ) Total area (um 2 ) Static current (uA) V OH (V) V OL (V) V IH (V) V IL (V) NM H (V) NM L (V)

40 2-input NOR gate, Ac Characteristics t PLH min (ns) t PHL min (ns) t P min (ns) t PLH max (ns) t PHL max (ns) t P max (ns) t r min ns t f min (ns) t r max (ns) t f max (ns) Av. power (mW) Peak power (mW)

41 2-input OR gate, Design

42 2-input OR gate, Layout

43 2-input OR gate, Simulation

44 2-input OR gate, DC Characteristics Active area (um 2 ) Total area (um 2 ) Static curren t(uA) V OH (V) V OL (V) V IH (V) V IL (V) NM H (V) NM L (V)

45 2-input OR gate, AC Characteristics t PLH min (ns) t PHL min (ns) t P min (ns) t PLH max (ns) t PHL max (ns) t P max (ns) t r min (ns) t f min (ns) t r max (ns) t f max (ns) Av. power (mW) Peak power (mW)

46 3-input NOR gate, Design

47 3-input NOR gate, Layout

48 3-input NOR gate, Simulation

49 3-input NOR gate, DC Characteristics Active area (um 2 ) Total area (um 2 ) Static curre nt(uA) V OH (V) V OL (V) V IH (V) V IL (V) NM H (V) NM L (V)

50 3-input NOR gate, AC Charcarteristics t PLH min (ns) t PHL min (ns) t P min (ns) t PLH max (ns) t PHL max (ns) t P max (ns) t r min (ns) t f min (ns) t r max (ns) t f max (ns) Av. power (mW) Peak power (mW)

51 3-input OR gate, Design

52 3-input OR gate, Layout

53 3-input OR gate, Simulation

54 3-input OR gate, DC Characteristics Active area (um 2 ) Total area (um 2 ) Static current (uA) V OH (V) V OL (V) V IH (V) V IL (V) NM H (V) NM L (V)

55 3-input OR gate, AC Characteristics t PLH min (ns) t PHL min (ns) t P min (ns) t PLH max (ns) t PHL max (ns) t P max (ns) t r min (ns) t f min (ns) t r max (ns) t f max (ns) Av. power (mW) Peak power (mW)

56 4-input OR gate, Design

57 4-input OR gate, Layout

58 4-input OR gate, Simulation

59 4-input OR gate, DC Characteristics Active area (um 2 ) Total area (um 2 ) Static current (uA) V OH (V) V OL (V) V IH (V) V IL (V) NM H (V) NM L (V)

60 4-input OR gate, AC Characteristics t PLH min (ns) t PHL min (ns) t P min (ns) t PLH max (ns) t PHL max (ns) t P max (ns) t r min (ns) t f min (ns) t r max (ns) t f max (ns) Av. power (mW) Peak power (mW)

61 2-input XOR gate, Design

62 2-input XOR gate, Layout

63 2-input XOR gate, Simulation

64 2-input XOR gate, DC Characteristics Active area (um 2 ) Total area (um 2 ) Static current (uA) V OH (V) V OL (V) V IH (V) V IL (V) NM H (V) NM L (V)

65 2-input XOR gate, AC Characteristics t PLH min (ns) t PHL min (ns) t P min (ns) t PLH max (ns) t PHL max (ns) t P max (ns) t r min (ns) t f min (ns) t r max (ns) t f max (ns) Av. power (mW) Peak power (mW)

66 3-input XOR gate, Design

67 3-input XOR gate, Layout

68 3-input XOR gate, Simulation

69 3-input XOR gate, DC Characteristics Active area (um 2 ) Total area (um 2 ) Static current (uA) V OH (V) V OL (V) V IH (V) V IL (V) NM H (V) NM L (V)

70 3-input XOR gate, AC Characteristics t PLH min (ns) t PHL min (ns) t P min (ns) t PLH max (ns) t PHL max (ns) t P max (ns) t r min (ns) t f min (ns) t r max (ns) t f max (ns) Av. power (mW) Peak power (mW)

71 3-input XNOR gate, Design

72 3-input XNOR gate, Layout

73 3-input XNOR gate, Simulation

74 3-input XNOR gate, DC Characteristics Active area (um 2 ) Total area (um 2 ) Static current (uA) V OH (V) V OL (V) V IH (V) V IL (V) NM H (V) NM L (V)

75 3-input XNOR gate, AC Characteristics t PLH min (ns) t PHL min (ns) t P min (ns) t PLH max (ns) t PHL max (ns) t P max (ns) t r min (ns) t f min (ns) t r max (ns) t f max (ns) Average power (mW) Peak power (mW)

76 Positive-Edge-triggered D Flip-Flop with Reset

77 Positive-Edge-triggered D Flip-Flop with Reset

78 Positive-Edge-triggered D Flip-Flop with Reset

79 Positive-Edge-triggered D Flip-Flop with Reset parameterminimumtypicalmaximumunit Clock frequency MHz t PLH Reset to Q ns t PHL Reset to Q ns t PLH CLK to Q ns t PHL CLK to Q ns Width of clock pulse ns Width of Reset pulse ns Setup time0.3 ns Hold time0.1 ns Average power dissipation at 1000MHz CLK mW

80 Positive-Edge-triggered D Flip-Flop with Preset

81 Positive-Edge-triggered D Flip-Flop with Preset

82 Positive-Edge-triggered D Flip-Flop with Preset

83 Positive-Edge-triggered D Flip-Flop with Preset parameterminimumtypicalmaximumunit Clock frequency MHz t PLH SET to Q ns t PHL SET to Q ns t PLH CLK to Q ns t PHL CLK to Q ns Width of clock pulse ns Width of SET pulse ns Setup time0.3 ns Hold time0.15 ns Average power dissipation at 1000MHz CLK mW

84 Positive-Edge-triggered D Flip-Flop with Clear and Load

85 Positive-Edge-triggered D Flip-Flop with Clear/ Load

86 Positive-Edge-triggered D Flip-Flop with Clear

87 Positive-Edge-triggered D Flip-Flop with Clear parameterminimumtypicalmaximumunit Clock frequency MHz t PLH CLR to Q ns t PHL CLR to Q ns t PLH CLK to Q ns t PHL CLK to Q ns Width of clock pulse ns Width of clear pulse ns Setup time0.5 ns Hold time0.2 ns Average power dissipation at 1000MHz CLK mW

88 Positive-Edge-triggered D Flip-Flop with Preset and Load

89 Positive-Edge-triggered D Flip-Flop with Preset and Load

90 Positive-Edge-triggered D Flip-Flop with Preset and Load