Tbilisi, 10/07/2014V. Carassiti, P. Lenisa 1. Tbilisi, 10/07/2014V. Carassiti, P. Lenisa2.

Slides:



Advertisements
Similar presentations
Electronics Cooling MPE 635 Mechanical Power Engineering Dept.
Advertisements

Fz-Juelich, 03/09/2013V. Carassiti, P. Lenisa 1 STATUS REPORT.
Liquid Hydrogen Absorber
Chapter 7 : Convection – External Flow : Cylinder in cross flow
The Current T2K Beam Window Design and Upgrade Potential Oxford-Princeton Targetry Workshop Princeton, Nov 2008 Matt Rooney.
MECHANISM OF HEAT TRANSFER Mode of Heat transfer Conduction Convection
Chapter 2: Overall Heat Transfer Coefficient
Mike Fitton Engineering Analysis Group Design and Computational Fluid Dynamic analysis of the T2K Target Neutrino Beams and Instrumentation 6th September.
First Wall Thermal Hydraulics Analysis El-Sayed Mogahed Fusion Technology Institute The University of Wisconsin With input from S. Malang, M. Sawan, I.
Status of T2K Target 2 nd Oxford-Princeton High-Power Target Workshop 6-7 th November 2008 Mike Fitton RAL.
Cryostat Structural, Thermal, and Vacuum Systems 14 October 2008 Martin Nordby, Gary Guiffre, John Ku, John Hodgson.
Heat Sink Selection Thermal Management of Electronics
Heat Transfer Rates Conduction: Fourier’s Law
Cooling of power semiconductor devices
PAX DETECTOR THERMAL SIMULATION 1Vittore Carassiti - INFN FEFz-Juelich, 27/10/2008.
Cooling design of the frequency converter for a wind power station
R&D Status and Plan on The Cryostat N. Ohuchi, K. Tsuchiya, A. Terashima, H. Hisamatsu, M. Masuzawa, T. Okamura, H. Hayano 1.STF-Cryostat Design 2.Construction.
Thomas Jefferson National Accelerator Facility Page 1 IPR October Independent Project Review of 12 GeV Upgrade Jefferson Lab October 18-20,
Heat Transfer Equations For “thin walled” tubes, A i = A o.
9/2003 Heat transfer review Heat transfer review What is required to size a heat exchanger What is required to size a heat exchanger.
Walter Sondheim, FVTX Review Nov 12 th, FVTX Mechanical Status : Walter Sondheim - LANL Mechanical Project Engineer; VTX & FVTX.
26 April 2013 Immanuel Gfall (HEPHY Vienna) Belle II SVD Overview.
Weather Part 1: Heating the Earth. Weather is… the daily condition of the Earth’s atmosphere. caused by the interaction of heat energy, air pressure,
2/28/05ME 2591 Electronics Cooling Reference: Cengel, Heat Transfer, 2 nd Edition, Chapter 15.
Objectives Calculate heat transfer by all three modes Phase change Next class Apply Bernoulli equation to flow in a duct.
Lesson 13 CONVECTION HEAT TRANSFER Given the formula for heat transfer and the operating conditions of the system, CALCULATE the rate of heat transfer.
30 th June 20111Enrico Da Riva, V. Rao Parametric study using Empirical Results June 30 th 2011 Bdg 298 Enrico Da Riva,Vinod Singh Rao CFD GTK.
Consideration of Baffle cooling scheme
August 7, 2003K. Chow, LHC Luminosity Detector Thermal Analysis1 Analysis cases Approach: Start simple to get information— with speed with confidence that.
Design of Vacuum Chambers of SSRF Storage Ring Yonglin. Chen, Dikui. Jiang SSRF Vacuum Group Shanghai Institute of Applied Physics(SINAP) China Academy.
Heat Transfer Equations. Fouling Layers of dirt, particles, biological growth, etc. effect resistance to heat transfer We cannot predict fouling factors.
LHC CMS Detector Upgrade Project FPIX Cooling Update Stefan Grünendahl, Fermilab For the FPIX Mechanical Group, 29 January 2015 Stefan Grünendahl,
Study Plan of Clearing Electrode at KEKB Y. Suetsugu, H. Fukuma (KEK), M. Pivi, W. Lanfa (SLAC) 2007/12/191 ILC DR Mini Work Shop (KEK) Dec.
GIGATRACKER SUPPORTING PLATE COOLING SYSTEM SIMULATION 1Vittore Carassiti - INFN FECERN, 11/12/2007.
Thermal Control System. The Three Mechanisms of Heat Transfer Conduction - The transfer of heat through a solid –Interface Heat Exchangers –Cold plates.
Thermal Screen Grounding CERN - Dec. 10 th, 2003 Enzo Carrone The thermal screen grounding and the tracker: a scary concert Enzo Carrone.
Mike Struik / LHC-CRI INSTRUMENTATION FEEDTHROUGH SYSTEM FOR LHC MACHINE ARC QUADRUPOLE MAGNETS. 123rd LHC Vacuum Design Meeting 19 April 1999.
Vessel dimensions GTK assembly carrier Electrical connections Cooling pipes integration Vessel alignment with the beam Next steps Conclusion 3/23/20102electro-mechanical.
Cooling of GEM detector CFD _GEM 2012/03/06 E. Da RivaCFD _GEM1.
W. EbensteinDOE annual review Duke UniversitySeptember, 1998 TRT Barrel Cooling: Electronics  Motivation: u Overheating of electronics causes premature.
EMC BWE Proto18 - Orsay Meeting 1 PANDA EMC BWE Proto18 Mikel Catania Goikoetxea, Javier Navarro Medrano, David Rodríguez Piñeiro, Yue Ma, Frank.
High Power Target Experience with T2K Chris Densham T2K Beamline Collaboration including RAL / KEK / Kyoto.
MVD COOLING STATUS COOLING PLANT UPDATE: -ADDITION of the NEW CIRCUITS FOR GBT AND DC-DC Converter BOARDS IN THE COOLING PLANT -THERMAL STUDY OF GBT AND.
Ice Melting Cubes Block A Feels Cold Block B Feels Warm Aluminum Conducts heat very well.
RFQ coupler S. Kazakov 07/28/2015. Requirements: Coupler requirements Expected problems: Heating (loop, ceramic window, etc.) Multipactor Solutions: Appropriate.
SPS High Energy LSS5 Thermal contact & cooling aspects
Anti project. F. Raffaelli. INFN CERN, April 05 th, Thermal Analysis of the Anti transportation. -Calculation of the manhole loads due to the valve.
F.Bosi, M.Massa, 11 th Pisa Meeting on Advanced Detectors, May 2009 Development and Experimental Characterization of Prototypes for Low Material.
Under floor heating Designing underfloor heating (UFH) system must always comply with the system suppliers instructions.
SVT Mechanics & Beam Pipe
Stress and cool-down analysis of the cryomodule
MICE Meeting at RAL, Oct-23, 2005
Pixel cooling specifications
SILICON PIXELS DETECTOR
Heat and Mass Transfer Heat is ……… Heat Transfer ……
TIDVG-4 TIDVG-4 Dump assembly, welding and installation Process sector BA1 February 2017 J. Humbert, (EN/MME) 06/02/2017 J. Humbert, EN-MME.
ECE Engineering Design Thermal Considerations
FP420 Detector Cooling Thermal Considerations
Temperature distribution in the target
Fundamentals of Heat Transfer
Heat Transfer Exam Review? Heat Transfer Mechanisms Conduction
VISUAL AIDS for instruction in VACUUM TECHNOLOGY AND APPLICATIONS
FREE CONVECTION – FIXED POWER TD1005
Members of project: Christian Brosch Andreas Maier Tamara Bubeck
Heat Conduction in Solids
Chapter 8 Heat Transfer.
Steam traps Applications and Recommendations
Single Detector Design
Fundamentals of Heat Transfer
Fourier’s law of heat conduction (one-dimensional) Consider steady state conduction.
Presentation transcript:

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa 1

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa2

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa3

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa4 COOLING FEED-THROUGH QUADRANT SUPPORT TARGET CELL

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa5 READ-OUT ELECTRONICS DETECTOR COOLING BOX INCLUDING 3 LAYERS

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa6 SENSORS LAYER 1 : HERMES SENSORS LAYER 3 : PAX SENSORS LAYER 2 : PAX READ-OUT LAYER 3 READ-OUT LAYER 2 READ-OUT LAYER 1

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa7 UPSTREAM DOWNSTREAM

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa8 LEFT RIGHT

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa9 READ-OUT PCB HERMES SENSOR

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa10 READ-OUT PCB PAX SENSOR

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa11 READ-OUT PCB PAX SENSOR

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa12

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa13 NOMINAL TUBE SIZE : ¼ in FLEXIBLE TUBE : ¼ in Code : 321-4x2 COLD PLATE DIMENSIONS: 125 x 252,5 x 8 mm^3 TUBE AND PLATE WELDED BY DIFFUSION: PROCESS UNDER VACUUM (10E-4 Bar) ; PRESSURE BETWEEN THE PARTS : 0,4-1,6 Bar ; WELDING TEMPERATURE : 50-70% OF THE MATERIAL MELTING POINT MANUFACTURER: THERMACORE EUROPE Ltd. ASHINGTON (UK)

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa14 Box Aluminum Surface = Bas = 0,337 m^2 Box Silicon Surface = Bss = 0,033 m^2 Box Temperature = Tb = -10 °C Room Temperature = Tr = 30 °C COOLING POWER = Pc = 5,672E-8 x [Ae x Bas + Se x Bss] x (Tr^4 – Tb^4) = 12,5 W Aluminum emissivity = Ae = 0,09 Silicon emissivity = Se = 0,9 ABSORBED RADIATION FROM ISOLATED BOX IN ROOM TEMPERATURE ENVIRONMENT

V. Carassiti, P. Lenisa15Tbilisi, 10/07/2014 COOLING FLUID : ETHANOL ALCOHOOL°CW/m^2C° Boiling point78,5 Freezing point-114 Convection coefficientα250 Delivery temperatureTd-19 Wall temperatureTw-10 Fluid temperatureTf = (Td + Tw)/2-14 ETHANOL Tf and atmospheric pressure Density (Kg/m^3)ρ818 Specific heat (J/KgK)Cp2287 Thermal conductivity (W/mK)λ0,13 Kinematic viscosity (m^2/s)ν2,69E-06 Kinematic Tw (m^2/s)νwνw2,54E-06 COOLING FLUID TEMPERATURE VS CONVECTION COEFFICIENT COOLING FLUID & CONVECTION COEFFICIENT SELECTION

V. Carassiti, P. Lenisa16Tbilisi, 10/07/2014 FLOW SPEED, FLOW RATE AND FLOW RESISTANCE α=250 W/m^2K

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa17 Single PCB power = 1,25 W PCB number/cooling plate = 4 Total power = 4 x 2 x 1,25 = 10 W PCB Temperature = Tb = 30 °C Room Temperature = Tr = 30 °C

V. Carassiti, P. Lenisa18Tbilisi, 10/07/2014 COOLING FLUID : ETHANOL ALCOHOOL°CW/m^2C° Boiling point78,5 Freezing point-114 Convection coefficientα150 Delivery temperatureTd25 Wall temperatureTw30 Fluid temperatureTf = (Td + Tw)/228 ETHANOL Tf and atmospheric pressure Density (Kg/m^3)ρ782 Specific heat (J/KgK)Cp2476 Thermal conductivity (W/mK)λ0,14 Kinematic viscosity (m^2/s)ν1,25E-06 Kinematic Tw (m^2/s)νwνw1,18E-06 COOLING FLUID TEMPERATURE VS CONVECTION COEFFICIENT COOLING FLUID & CONVECTION COEFFICIENT SELECTION

V. Carassiti, P. Lenisa19Tbilisi, 10/07/2014 FLOW SPEED, FLOW RATE AND FLOW RESISTANCE α=150 W/m^2K

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa20 DETECTOR (1/4)PCBs (1/4) TEMPERATURE (°C) POWER (W) 1510 FLOW RATE (Kg/h) 15,35,7 FLOW RESISTANCE (Pa)

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa21 COLD PLATE SUPPLYING-COLLECTING RINGS OUTPUT INPUT MANUFACTURER: NORDIVAL Srl SWAGELOCK ITALIA ROVATO (ITALY)

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa22 Fr D1 Fr = box cooling flow rate = 18,7 (l/h) Fr D4 Fr D3 Fr D2 4Fr = Qin Li1 2F r Li2 Fr Li3 Fr Lo3 FrFr FrFr 2F r Lo2 4Fr = Qout Lo1 Collecting ring Supplying ring Box circuit L = length of the branches (m)

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa23

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa24 BranchLo1Lo2Lo3D1Li3Li2Li1 Q (m^3/s)2,07E-051,04E-050,52E-05 1,04E-052,07E-05 L (m)0,5230,3440,6422,4420,6420,3440,523 d (m)4,55E-037,73E-03 4,55E-037,73E-03 4,55E-03 A (m^2)1,63E-054,7E-05 1,62E-054,7E-05 1,63E-05 c (m/s)1,270,220,110,320,110,221,27 Re λ 0,030,10,20,120,20,10,03 Δ P T (Pa) TOTAL FLOW RATE = 75 l/h TOTAL PUMPING PRESSURE = 8250 Pa FLOW RATE UNIFORMITY WITHIN 1%

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa25 COLD PLATES SUPPLYING-COLLECTING RINGS OUTPUT INPUT

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa26 BranchLo1Lo2Lo3D1Li3Li2Li1 Q (m^3/s)8E-064E-062E-06 4E-068E-06 L (m)0,5230,3650,7305,3440,7300,3650,523 d (m)4,55E-037,73E-03 4,55E-037,73E-03 4,55E-03 A (m^2)1,63E-054,7E-05 1,62E-054,7E-05 1,63E-05 c (m/s)0,50,10,050,120,050,10,5 Re λ 0,040,120,240,140,240,120,04 Δ P T (Pa) TOTAL FLOW RATE = 30 l/h TOTAL PUMPING PRESSURE = 1942 Pa FLOW RATE UNIFORMITY WITHIN 1%

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa27

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa28 QUADRANT SEATS QUADRANT ASSEMBLING SCREWS CS1 CS3 CS2 SUPPORT CROSS SECTIONS : CS1 = 80 x 20 mm^2 CS2 = CS4 = 40 x 20 mm^2 CS3 = 33 x 20 mm^2 CS5 = 20 X 20 mm^2 CS5 CS4 CHAMBER MOUNTING WALL CHAMBER WALL

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa29 QUADRANT SEAT QUADRANT ASSEMBLED

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa30 FIXED END BEARING P1 P4 P2 P3 R2 R1 APPLIED LOADS : P1 = P4 = 104 N P2 = P3 = 92 N THE TOTAL LOAD APPLIED TO ONLY ONE SUPPORT LOADS : P support = 40 N P detector quadrant = 72 N P cooling system = 22 N P target cell = 42 N P target cell support = 3 N R1, R2 = REACTIONS

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa31 FIXED END P4 CS2 P2+P 3 CS3 P1 L3 L2 L1 APPLIED LOADS : P1 = P4 = 104 N P2 + P3 = 184 N LENGTHS: L1 = 143 mm L2 = 250 mm L3 = 357 mm FIXED END CS1 MATERIAL : ALUMINUM 6061 σ R =290 MPa σ S =240 Mpa σ AMM =240/1,6= 150 MPa

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa32 FIXED END P4 CS2 P2+P 3 CS3 P1 CS4 L3 L2 L1 APPLIED LOADS : P1 = P4 = 104 N P2 + P3 = 184 N LENGTHS: L1 = 143 mm L2 = 250 mm L3 = 357 mm L4 = 415 mm FIXED END + BEARING CS1 MATERIAL : ALUMINUM 6061 σ R =290 MPa σ S =240 Mpa σ AMM =240/1,6= 150 MPa BEARING CS5 L4

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa33 FIXED ENDFIXED END + BEARING M CS1 (Nm)98 (max)9,4 M CS3 (Nm)11,112,5 (max) T CS1 (N)392258,6 T CS5 (N)-133,4 98 Nm 392 N 9,4 Nm 258,6 N133,4 N VACUUM CHAMBER 12,5 Nm 11,1 Nm

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa34

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa35 50 PINS CONNECTOR DNCF100 FLANGE

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa36

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa37

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa mm INSERTION/EXTRACTION 168 mm INSERTION WINDOW = 397 mm ; DETECTOR SIZE = 390 mm

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa39

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa40

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa41

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa42

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa43

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa44

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa45

Tbilisi, 10/07/2014V. Carassiti, P. Lenisa46