Fundamental interaction and nuclear structure studies with atom traps Peter Müller.

Slides:



Advertisements
Similar presentations
LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009.
Advertisements

Photo-Nuclear Physics Experiments by using an Intense Photon Beam Toshiyuki Shizuma Gamma-ray Nondestructive Detection Research Group Japan Atomic Energy.
Atomic Parity Violation in Ytterbium, K. Tsigutkin, D. Dounas-Frazer, A. Family, and D. Budker
Ra-225: The Path to a Next Generation EDM Experiment
Search for the Schiff Moment of Radium-225
University of Liverpool
IKON7, Instrument clip session, September 2014, ESS Headquarters and Medicon Village, Lund, Sweden A cold neutron beamline for Particle
Marina Quintero-Pérez Paul Jansen Thomas E. Wall Wim Ubachs Hendrick L. Bethlem.
TRIUMF Atomic Parity Violation in Francium Seth Aubin College of William and Mary PAVI 2011 Workshop La Sapienza University, Rome.
Laser cooling of molecules. 2 Why laser cooling (usually) fails for molecules Laser cooling relies on repeated absorption – spontaneous-emission events.
6/17/20141 Absolute nuclear charge radii for elements without stable isotopes via precision x-ray spectroscopy of lithium-like ions Andrew Senchuk, Gerald.
Quantum Computing with Trapped Ion Hyperfine Qubits.
Rydberg physics with cold strontium James Millen Durham University – Atomic & Molecular Physics group.
The LaSpec project. At FAIR… Cheapest(?),Fully destripped…
Another Route to CP Violation Beyond the SM – Particle Dipole Moments Dave Wark Imperial/RAL WIN05 Delphi June 10, 2005.
A Search for Temporal and Gravitational Variation of  in Atomic Dysprosium Variation of Constants & Violation of Symmetries, 24 July 2010 Arman Cingöz.
Search for the Electron Electric Dipole Moment Val Prasad Yale University Experiment: D.DeMille, D. Kawall, R.Paolino, V. Prasad F. Bay, S. Bickman, P.Hamilton,
The Forbidden Transition in Ytterbium ● Atomic selection rules forbid E1 transitions between states of the same parity. However, the parity-violating weak.
Zheng-Tian Lu Physics Division, Argonne National Laboratory Department of Physics, University of Chicago Search for a Permanent Electric Dipole Moment.
Experimental Atomic Physics Research in the Budker Group Tests of fundamental symmetries using atomic physics: Parity Time-reversal invariance Permutation.
Trapped Radioactive Isotopes:  icro-laboratories for fundamental Physics EDM in ground state (I=1/2) H = -(d E + μ B) · I/I m I = 1/2 m I = -1/2 2ω12ω1.
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
Chad Orzel Union College Physics Radioactive Background Evaluation by Atom Counting C. Orzel Union College Dept. of Physics and Astronomy D. N. McKinsey.
Electric Dipole Moment of Neutron and Neutrinos
TRIµP Laser Spectroscopy: Status and Future U Dammalapati TRI  P Facility Lasers for Na  -decay Ra Spectroscopy & EDM Towards cooling of Heavy Alkaline.
Precise Measurement of Vibrational Transition Frequency of Optically Trapped molecules NICT Masatoshi Kajita TMU G. Gopakumar, M. Abe, M. Hada We propose.
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
Funded by: NSF Timothy C. Steimle, Fang Wang a Arizona State University, USA & Joe Smallman b, Physics Imperial College, London a Currently at JILA THE.
Laser Cooling 1. Doppler Cooling – optical molasses. 2. Magneto-optical trap. 3. Doppler temperature.
Towards a finite ensemble of ultracold fermions Timo Ottenstein Max-Planck-Institute for Nuclear Physics Heidelberg 19th International IUPAP Conference.
KVI – Groningen Fundamental Interactions Klaus Jungmann RECFA Meeting, Amsterdam, 23 September 2005 AGOR.
Lawrence Livermore National Laboratory Nicholas Scielzo Lawrence Fellow Physics Division, Physical Sciences LLNL-PRES Lawrence Livermore National.
Spectroscopy of a forbidden transition in a 4 He BEC and a 3 He degenerate Fermi gas Rob van Rooij, Juliette Simonet*, Maarten Hoogerland**, Roel Rozendaal,
Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8 Zheng-Tian Lu Argonne National Laboratory University of Chicago Funding: DOE, Office of.
Low-frequency nuclear spin maser and search for atomic EDM of 129 Xe A. Yoshimi RIKEN SPIN /10/11-16 Trieste, ITALY Collaborator : K. Asahi (Professor,
Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:
Single atom manipulations Benoît Darquié, Silvia Bergamini, Junxiang Zhang, Antoine Browaeys and Philippe Grangier Laboratoire Charles Fabry de l'Institut.
Light scattering and atom amplification in a Bose- Einstein condensate March 25, 2004 Yoshio Torii Institute of Physics, University of Tokyo, Komaba Workshop.
Stefan Truppe MM-Wave Spectroscopy and Determination of the Radiative branching ratios of 11 BH for Laser Cooling Experiments.
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
Fundamental Interactions Physics & Instrumentation Conclusions Conveners: P. Mueller, J. Clark G. Savard, N. Scielzo.
Resonant dipole-dipole energy transfer from 300 K to 300μK, from gas phase collisions to the frozen Rydberg gas K. A. Safinya D. S. Thomson R. C. Stoneman.
Atomic Parity Violation in Francium
Cavity-Enhanced Parity-Nonconserving Optical Rotation in Hg, Xe, I (and Cs) T. Peter Rakitzis Department of Physics, University of Crete, & Institute of.
Nanuf03, Bucharest, Stefan Kopecky Traps for fission product ions at IGISOL Experimental Facilities Mass Measurements Status and Future Perspectives.
Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:
Possible measurement of electron EDM in atoms with spatially alternating electric field T. Haseyama RIKEN, Japan ( The Institute of Physical and Chemical.
TAS workshop 30-31/3/2004 Aspects of recoil-ion -  correlations in atomic traps A reminder why (V-A, ?S + ?T) Energy scales  basic setup  RIMS Precision.
Laser Cooling and Trapping Magneto-Optical Traps (MOTs) Far Off Resonant Traps (FORTs) Nicholas Proite.
Parity nonconservation in the 6s 2 1 S 0 – 6s5d 3 D 1 transition in Atomic Ytterbium: status of the Berkeley experiments K. Tsigutkin, J. Stalnaker, V.
Fundamental interactions and symmetries at low energies what does NUPECC say…. Time-reversal violation and electric dipole moments Time-reversal violation.
Фото MANIPULATING THE QUANTUM STATE OF SINGLE ATOMS AND PHOTONS works of Nobel Laureates in physics 2012 A.V.Masalov Lebedev Physics Institute, RAS, Moscow.
State Scientific Center of the Russian Federation National Research Institute for Physical-Technical and Radio Engineering Measurements Progress in deep.
The BeTINa Collaboration
Jerzy Zachorowski M. Smoluchowski Institute of Physics, Jagiellonian University Nonlinear Spectroscopy of Cold Atoms, Preparations for the BEC Experiments.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Atom trapping and Recoil Ion Spectrometry for  -decay (and other BSM) studies H.W. Wilschut, KVI, Groningen Or why it is easier to measure things standing.
The TRI  P programme at KVI Tests of the Standard Model at low energy Hans Wilschut KVI – Groningen Low energy tests e.g. Time reversal violation precision.
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Laser spectroscopy and beta-NMR for nuclear physics and applications Magdalena Kowalska CERN, PH-Dept Laser spectroscopy setups at ISOLDE Example – COLLAPS.
Tests of Symmetries with Neutrons and Nuclei at Very Low Energies Stephan Paul TU-München.
Standard Model Tests with Nuclei and Energy Applications Jerry Nolen, ANL and Guy Savard, ANL/Uof C (Standard Model) Yousry Gohar, ANL and Shekhar Mishra,
1 m Tungsten Carbide Spectroscopy for electron EDM Measurement Jeongwon Lee June 23, 2011 Jinhai Chen, and Aaron E. Leanhardt Department of Physics, University.
The WITCH Experiment 5th International Symposium on Symmetries in Subatomic Physics June 18-22, 2012 KVI, Groningen G. Ban 1, M. Breitenfeldt 2, V. De.
Neutron and electron electric dipole moments
Using ultracold neutrons to constrain the neutron electric dipole moment Tamas Budner.
Photon counter with Rydberg atoms
Beta Neutrino Correlation Measurement with Trapped Radioactive Ions
University of California, Berkeley
Presentation transcript:

Fundamental interaction and nuclear structure studies with atom traps Peter Müller

2 Argonne Cold Atom Trappers From left to right: Z.-T. Lu, P. Mueller, I. Sulai, K. Bailey, M. Kalita, S.M. Hu, W. Williams, W. Jiang, T.P. O’Connor, J. Singh, R. Parker, M. Dietrich, R. Holt

3 Outline  Atom trapping 101  Selectivity 39 Ar Trace Analysis  Resolution 6,8 He Charge Radius  Control over external degrees of freedom 6 He  correlation  Control over internal degrees of freedom 225 Ra permanent electric dipole moment

4 Spontaneous Scattering Light Force Resonance & Repetition Laser Beam Atom Resonance Requirement  ~ 10 MHz Scattering Rate  Force Laser Frequency f L f L = f A Force  (f L -f A ) 2 +(  /2) 2 1 p  ~1.5 eV/c p a ~75000 eV/c x 1x10 7 /s

5 Doppler Cooling Laser Beam Atom Laser frequency red detuned  = 6 MHz T D = 0.1 mK

6 Magneto-Optical Trap Raab et al., Bell Lab & MIT, 1987

7 Trapping F = -kxCooling F = -av A Trap with Cooling Magnetic Field B(x) f A (x) Zeeman Shift Atom Velocity f L (v) Doppler Shift

8 Magneto Optical Trap Pros: Cooling: Temperature < 1 mK,  high resolution Long observation time: 100 ms – 20 s Spatial confinement: trap size < 1 mm  single atom sensitivity Selectivity via repeated excitation, isotope shifts, HFS  no isotopic / isobaric interference Cons: Relatively feeble forces-> moderate trapping efficiencies Need “cycling” transition -> not applicable for all elements

9 Trapped (-able) Elements “Radioactive” Atom Traps World Wide TRIUMF, Vancouver, Canada K, Rb:  correlation, heavy search Fr: parity violation, anapole moments LBNL, Berkeley, USANa:  correlation KVI, Groningen, NetherlandsRa: electric dipole moment Na:  correlation INFN, Legnaro, ItalyFr: parity violation Tohoku University, Sendai, JapanFr: electric dipole moment (#207) USTC, Hefei, ChinaKr-85,81: trace analysis University of Hamburg, GermanyKr-85: trace analysis University of Heidelberg, GermanyAr-39: trace analysis

10 39 Ar Atom Trap Trace Analysis Argon-39 : cosmogenic isotope half-life = 270 years 39 Ar/Ar = 8 x Radio-Argon Dating : 50 – 1000 year range study ocean and groundwater previously with LLC and AMS Dark Matter Searches : LAr detectors (WARP, DEAP/CLEAN) 39 Ar major background search for old / depleted Argon WIMP Argon Programme

11 Atom Trap Trace Analysis III * Kr-85 Trap loading rates 40 Ar: ~ 3 x / s 38 Ar: ~ 2 x 10 9 / s 39 Ar: 1 in ~ 4 hrs “Life of a single atom” 5p[5/2] 3 5s[3/2] 2 Metastable 811 nm

12 39 Ar at Parts-per-quadrillion Atmospheric 39 Ar/Ar = 8x Depleted 39 Ar/Ar < 1x W. Jiang et al., PRL 106, (2011)

13 Atom Trapping of 6 He & 8 He at GANIL Atom Trap Setup 389 nm 1083 nm 6 He 8 source5x10 7 s -1 1x10 5 s -1 Efficiency = 1x10 trap5 s hr -1 Helium Rates Single atom signal One 6 He atom Spectroscopy 389 nm 23S123S1 11S011S0 2 3 P P 2 Trap 1083 nm He level scheme

14 6 He & 8 He RMS Charge Radii 6 He 8 He Field Shift, MHz-1.464(34)-1.026(63) RMS R CH, fm2.072(9)1.961(16) Total Uncertainty0.4 %0.9 % - Statistical0.1 %0.6 % - Trap Systematics0.3 %0.6 % - Mass Systematics0.1 %0.0 % - He-4: 1.681(4) fm0.1 % L.B. Wang et al., PRL 93, (2004) – He-6 P. Mueller et al., PRL 99, (2007) – He-8 + V. L. Ryjkov et al., PRL 101, (2008): He-8 mass + I. Sick PRC 77, (R) (2008): He-4 Charge Radius + A. Ong, J.C. Berengut, V.V. Flambaum, PRC 82, (2010)

15 Beta-Neutrino Correlation in the Decay of 6 He 6 He 6 Li t 1/2 =0.808 sec 100%  E 0 = MeV Johnson et al., Phys. Rev. (1963) Best experimental limit: a = ± Na

16 Beta-Decay Study with Laser Trapped 6 He 6 He trapping rate of 2  10 3 s -1 with 2  trapping efficiency  a/a = 0.1% in ~4 week beam time Simple … atom, nucleus, decay mode Sensitive to tensor couplings 6 He yields: CENPA: ~1  10 9 s -1 with 7 Li(d,   e) 6 5 p  A -> O. Naviliat-Cuncic, Fri., 11:10

17 Electric Dipole Moment (EDM) Violates Both P and T TP EDMSpinEDMSpinEDM Spin A permanent EDM violates both time-reversal symmetry and parity Neutron Diamagnetic Atoms (Hg, Ra) Paramagnetic Atoms (Tl) Molecules (PbO,YbF) Quark EDM Quark Chromo-EDM Electron EDM Physics beyond the Standard Model: SUSY, String…

18 EDM measurement on 225 Ra Transverse cooling Oven: 225 Ra Zeeman Slower Magneto-optical Trap (MOT) Optical dipole trap (ODT) EDM measurement Why trap 225 Ra atoms Large enhancement: EDM (Ra) / EDM (Hg) ~ 10 2 – 10 3 Efficient use of the rare 225 Ra atoms High electric field (> 100 kV/cm) Long coherence times (~ 100 s) Negligible “v x E” systematic effect

19 ODT Shuttle 50 cm ~ 30, Ra atoms ~50  K - atoms moved 50 cm - atom lifetime limited by vacuum ~ 10 s

20 EDM Beamline

21 Dipole trap hand off in EDM science chamber Standing wave ODT Shuttle ODT HV Electrodes

22 EDM measurement on 225 Ra Transverse cooling Oven: 225 Ra Zeeman Slower Magneto-optical trap Optical dipole trap EDM measurement Statistical uncertainty: 100 kV/cm 10 s % 10 days  d = 3  e cm Best experimental limit: d( 199 Hg) < 3  e cm Ra / Hg Enhancement factor ~ s days  d = 3  e cm

23 “Radioactive” Atom Traps elaborate, but high precision tool to manipulate radioactive isotopes high selectivity, sensitivity, resolution, and exquisite control of external and internal degrees of freedom (when you really need it)

24 Thank You! He-8: P. Mueller, K. Bailey, R. J. Holt, R. V. F. Janssens, Z.-T. Lu, T. P. O'Connor, I. Sulai, Physics Division, Argonne National Laboratory, USA, M.-G. Saint Laurent, J.-Ch. Thomas, A.C.C. Villari, J.A. Alcantara-Nunez, R. Alvez-Conde, M. Dubois, C. Eleon, G. Gaubert, N. Lecesne, GANIL, Caen, France, G. W. F. Drake, University of Windsor, Windsor, Canada, L.-B. Wang, Los Alamos National Laboratory, USA Ar-39: W. Jiang, W. Williams, K. Bailey, T. O’Connor, Z.-T. Lu, P.Mueller Physics Division, Argonne National Laboratory, R. Purtschert, Institute of Physics, University of Bern, N. Sturchio, Department of Earth and Environmental Science, University of Illinois, A. Davis, Department of Geophysical Sciences, University of Chicago, S.M. Hu, B. Sun, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China Ra-225: Z.-T. Lu, I. Ahmad, K. Bailey, M. Dietrich, R. J. Holt, J. P. Greene, P. Mueller, T. P. O’Connor, R. Parker, J. Singh, I. A. Sulai, W. L. Trimble, Physics Division, Argonne National Laboratory, M. Kalita, W. Korsch, University of Kentucky, Lexington He-6: P. Mueller, Z.-T. Lu, W. Williams, Physics Division, Argonne National Laboratory, A. Garcia, D. Hertzog, P. Kammel, R.G.H. Robertson, A. Knecht, D. Zumwalt, R. Hong, G. Harper, E.H. Swanson, University of Washington, Seattle, O. Naviliat-Cuncic, Michigan State University, X. Flechard, LPC Caen