Presentation is loading. Please wait.

Presentation is loading. Please wait.

Ra-225: The Path to a Next Generation EDM Experiment

Similar presentations


Presentation on theme: "Ra-225: The Path to a Next Generation EDM Experiment"— Presentation transcript:

1 Ra-225: The Path to a Next Generation EDM Experiment
Peter Mueller Argonne National Laboratory Supported by U.S. DOE, Office of Nuclear Physics Go to "View | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

2 Electric Dipole Moment (EDM) Violates Both P and T
A permanent EDM violates both time-reversal symmetry and parity + T + P - - - + EDM Spin EDM Spin EDM Spin Neutron Quark EDM Physics beyond the Standard Model: SUSY, String… Diamagnetic Atoms (Hg, Ra) Quark Chromo-EDM Paramagnetic Atoms (Tl) Molecules (PbO,YbF) Electron EDM

3 |a |b EDM of 225Ra enhanced Parity doublet - = (|a - |b)/2
Nuclear Spin = ½ Electronic Spin = 0 t1/2 = 15 days EDM of 225Ra enhanced: Large intrinsic Schiff moment due to octupole deformation; Closely spaced parity doublet; Relativistic atomic structure. Haxton & Henley (1983) Auerbach, Flambaum & Spevak (1996) Engel, Friar & Hayes (2000) - = (|a - |b)/2 + = (|a + |b)/2 55 keV |a |b Parity doublet Enhancement Factor: EDM (225Ra) / EDM (199Hg) Skyrme Model Isoscalar Isovector Isotensor SkM* 110 800 160 SLy4 230 2800 400 EDM of Hg, Ra…, Dzuba, Flambaum, Ginges, Kozlov, PRA (2002) Schiff moment of 199Hg, de Jesus & Engel, PRC (2005) Schiff moment of 225Ra, Dobaczewski & Engel, PRL (2005) Fully self-consistent calculations…, Ban et al. (2010)

4 225Ra Source Rare Isotope Facility
b a a,b 229Th 7300 yr 225Ra 15 days 225Ac 10 days Fr, At, Rn… ~ 4 hours 209Bi stable • 2 mCi (or 60 ng) 225Ra sources available from Oak Ridge National Lab -- competing with cancer therapies using 213Bi, 225Ac • Test source: 300 nCi 226Ra (1600 yr) -- invaluable for testing • Ra(NO3)2 reduced by Ba metal and Al in 700 C oven Rare Isotope Facility Yield for 225Ra ~ s-1

5 Statistical uncertainty:
Transverse cooling Oven: 225Ra Zeeman Slower Magneto-optical Trap (MOT) Optical dipole trap (ODT) EDM measurement EDM measurement on 225Ra Statistical uncertainty: 100 kV/cm 10 s 104 10% 10 days dd = 3 x e cm Ra / Hg Enhancement factor ~ dd(199Hg) = 1.5 x e cm

6 Radium Atom Energy Level Diagram
6 ns Radium Atom Energy Level Diagram 7p 1P1° 1e-1 V. Dzuba, V. Flambaum et al., PRA 61 (2000) 1429 nm, repump, diode laser 0.4 ms Single photon kick  dv = 3 mm/s No repump, 20k cycles. With repump, 20M cycles. 6d 1D2 2e-6 6 ms 5e-2 7p 3P2° 5e-4 6d 3D3 483 nm 5e-2 2e-2 420 ns 7e-10 70 2e-2 7p 3P1° 6d 3D2 4e-5 2e-3 1 0.7 ms 714 nm, cycling, Ti:S ring laser 6e-4 6d 3D1 7p 3P0° Linewidth ~ 400 kHz. kBT = hG Doppler cooling limit 7 mK, 14 mm/s 7s2 1S0

7 Radium Atom Repump Dynamics
2000 cm-1 N() Blackbody spectrum @ 298K (kBT/hc) = 210cm-1) 2.2 E2 7.4 E1 3.4 E1 298 K thermal transition rates 1429nm Repumping to 1P1 482nm 3P1 9.9 E1 3D1 Laser-cooling 0.6 ms 1.5 E3 3P0 0.4 mm 3,000 trapped radium atoms 1S0

8 EDM in an optical dipole trap
Fiber laser: l = 1550 nm, Power = 40 Watts Focused to 100 mm  trap depth 350 mK EDM in an optical dipole trap v x E , Berry’s phase effects suppressed Cold scattering suppressed between cold Fermionic atoms Rayleigh scat. rate ~ 10-1 s-1 ; Raman scat. rate ~ s-1 Conclusion: possible to reach e cm for 199Hg ---- Fortson & Romalis, PRA (1999)

9 Radium trapping and measurements
Magneto-optical trap (MOT) of radium realized [Guest et al. PRL 2007]; Key atomic properties determined; Lifetimes of 3P1 [Scielzo, PRA 2006] and 1D2 [Trimble, PRA 2009]; Optical dipole trap (ODT) of radium realized (2010); MOT to ODT transfer efficiency reaching 80%. MOT 0.4 mm 3,000 atoms MOT & ODT Head-on view Sideview MOT 0.4 mm ODT mm

10 Radium EDM Setup 10W

11 B-Field: Shields, Coils, Magnetometers
Design Goal B = 10 mG Stability: < 1 ppm in 100 sec Uniformity: < 1% / cm m-shields: Shielding factor = 2 x 104 Rb cell magnetometer: Budker design B gradient < 10 μG/cm

12 E-Field: 100 kV / cm -- Done. 20 kV over 2mm vacuum gap
< 50 pA leakage currents observed

13 Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

14 Statistical uncertainty:
Transverse cooling Oven: 225Ra Zeeman Slower Magneto-optical trap Optical dipole trap EDM measurement EDM measurement on 225Ra Statistical uncertainty: 100 kV/cm 10 s 104 10% 10 days dd = 3 x e cm 100 s 106 100 days dd = 3 x e cm Phase II Ra / Hg enhance factor ~ dd(199Hg) = 1.5 x e cm

15 Blue Trap Upgrade Present trap scheme (total of 4 lasers)
7p 1P1 Trap, 714 nm 7s2 1S0 7p 3P1 420 ns 6 ns 6d 3D1 Pump #1 6d 1D2 430 ms 6d 3D2 Trap, 483 nm Pump #2 Pump #3 Blue trap scheme (total of 8 lasers) First trap laser: 483 nm (strong); Second trap laser: 714 nm; 3 repumpers: 1428 nm, 1488 nm, 2.75 mm; Laser trapped 171Yb as co-magnetometer. 399 nm, 556 nm 100 times more trapped atoms; Improved control on systematics; EDM sensitivity: e-cm. Present trap scheme (total of 4 lasers) Trap laser: 714 nm (weak); One repump laser: 1428 nm (#1); External Rb cell magnetometers: 780 nm. Too full, reduce info on transitions

16 M. Kalita , W. Korsch, Z.-T. Lu, P. Mueller, and T. P. O’Connor
Argonne Atom Trappers I. A. Sulai, W. L. Trimble, R. H. Parker, K. Bailey, J. P. Greene, R. J. Holt, M. Kalita , W. Korsch, Z.-T. Lu, P. Mueller, and T. P. O’Connor Argonne & U Kentucky

17 Rb Magnetometry Coil Shields B Rb B Rb Ra-225

18 3P1 3D1 3P0 Blackbody repumping 654 s Repump OFF Repump ON Repumping
to 1P1 (482nm photon) Laser-cooling 3.4 E1 298 K thermal transition rates 654 s

19 EDM Systematics and noise
Environmental sources MOT & Zeeman slower Leakage current between electrodes Motional field (1/c2 v x E) Geometric phase E-quadrupole terms + incomplete E-reversal Trap location moves Cold collisions Current supply noise Optical dipole trap effects Zeeman-like light shift E1-M1 interference term Monitor and control Optical dipole trap Standing wave Linear polarization E parallel B E, B perpendicular to polarization Magnetic field monitor and control m-shields shielding factor = 2 x 104 B-gradient < 10 μG/cm B-instability < 1 ppm in 100 s B-field monitor and cancellation using magnetometers External Rb vapor cells, 5 cm away Co-trapped 171Yb atoms, co-magnetometer and null-EDM, < 50 mm apart Many reversals B field E field polarization detection phase Go to "View | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

20 The Seattle EDM Measurement
199Hg stable, high Z, J = 0, I = ½, high vapor pressure E E Courtesy of Michael Romalis The best limit on atomic EDM EDM (199Hg) < 3 x e-cm Griffith et al., Phys Rev Lett (2009) +e -e cm Unit EDM

21 Table of Elements 1S0

22 Experiment seems feasible with modest (< 10 mCi) 225Ra sources.
Stern man Geiger counter Special thanks to our health physicists Paul Niquette and Lee Sprouse.

23 226Ra and 225Ra Hyperfine constants and isotope shift on 3D1 - 1P1
3/2 -> 3/2 Ra-226 Ra-225 F 540(4) MHz 1P1 3/2 1/2 4196(2) MHz ISOLDE: 4195(4) MHz* cm-1 3/2 3D1 1/2 -> 3/2 3/2 -> 1/2 1/2 -> 1/2 1/2 7031(2) MHz *Ahmad et al., Phys. Lett. 133B, 47 (1983)

24 Atom traps at Argonne He Ra Kr q ne b 6He 6Li Nuclear New Standard
Structure New Standard Model He Ra Kr 6He ne 6Li + b - q New Standard Model Applications 24

25 Argonne National Laboratory
Google: atom trap


Download ppt "Ra-225: The Path to a Next Generation EDM Experiment"

Similar presentations


Ads by Google