Presentation is loading. Please wait.

Presentation is loading. Please wait.

Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:

Similar presentations


Presentation on theme: "Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:"— Presentation transcript:

1 Laser Laboratory (-ies) Peter Müller

2 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages: Large enhancement: EDM(Ra) / EDM(Hg) ~ 200 – 2000 Efficient use of 225 Ra atoms High electric field (> 100 kV/cm) Long coherence times (~ 100 s) Negligible “v x E” systematic effect

3 3 Search for EDM of 225 Ra Status: Trapped 225 Ra and 226 Ra EDM probing region constructed 10 -10 Torr, 100 kV/cm, 10 mG Next steps: Dipole trap transfer Optical pumping and detection 2 mm gap > 100 kV/cm ~ 1x10 4 226 Ra atoms

4 4 81 Kr / 39 Ar Atom Trap Trace Analysis Argon-39 : cosmogenic half-life = 270 a 39 Ar/Ar = 8 x 10 -16 Radio-Argon Dating : 50 – 1000 year range study ocean and groundwater previously with LLC and AMS Dark Matter Searches : LAr detectors (WARP, DEAP/CLEAN) 39 Ar major background search for old / depleted Argon WIMP Argon Programme Krypton-81 : cosmogenic half-life = 230 ka 81 Kr/Kr = 1 x 10 -12

5 5 Atom Trapping & Nuclear Charge Radii of 6,8 He He-6: L.-B. Wang et al., PRL 93, 142501 (2004) He-8: P. Mueller et al., PRL 99, 252501 (2007) 389 nm 1083 nm Atom Trap Setup Single atom signal 8 He Spectroscopy

6 6

7 7 Beta-Decay Study with Laser Trapped 6 He 6 He trapping rate: 1  10 4 s -1, 2  10 5 coincidence events in 15 min:  a = ± 0.008 1 week:  a/a = 0.1% Simulated time-of-flight signal Standard Model New Physics 6 He yields: ATLAS: 1  10 7 s -1 CENPA: ~1  10 9 s -1 SARAF / SPIRAL2: ~1  10 12 s -1

8 8 Isotopic Menu for Laser Spectroscopy Low-energy yield, s -1 > 10 6 10 5 - 10 6 10 4 - 10 5 10 3 - 10 4 10 2 - 10 3 10 - 10 2 1 - 10 < 1 Isotope shifts ->charge radii, deformations Hyperfine structure -> moments (dipole,…) ->spin

9 9 Laser Lab Layout @ CARIBU AC HEPA Laser Enclosure (~ 6’ x 10’) Laser Table (~ 3’ x 7’) Ion Trap Collinear Beamline Tape Station Cf-252 source 80 mCi -> 1Ci High-resolution mass separator  m/m > 1/20000 Gas catcher RF Cooler & Buncher … starting in fall 2010

10 10 Linear Paul Trap for Spectroscopy PMT / EMCCD open geometry, linear Paul trap -> large light collection efficiency buffer gas w. LN 2 cooling, -> good spectroscopic resolution, quenching of dark states -> few (single ?) ion detection sensitivity ITO coated optics Ba + black, conductive coated electrodes

11 11 Ion Trap Spectroscopy at CARIBU Linear Paul trap for spectroscopy –Initially with neutron-rich Ba + –Isotope shift + moments (HFS) –Use RF cooler / buncher & transfer line To investigate: –optimized trap geometry and detection system –Buffer gas cooling + quenching (with H 2 ) –Cooling of trap with LN 2 Future: –other CARIBU beams High mass: Pr, Nd, Eu, … Low mass: Y, Zr, Nb, Sr, … –Yb + -> No + with ATLAS Upgrade Ba Isotopes

12 12 Collinear Laser Spectroscopy High spectroscopic resolution High sensitivity through bunched beams Neutral atoms w/charge-exchange Measure for the first time: Rh, Ru, … Extend isotopic chains on: Sn, Mo, Nb, … Other opportunities: Laser polarized beams, e.g., Kr, Xe … Laser polarization in matrix (solid noble gasses) Resonance ionization to suppress isobars/isomers … … 2011

13 13 Isotopic Menu – “Low Mass” Wavelengths, nmLaser SpectroscopyCARIBU IIILSMethodRange > 100/s 30Zn589.4 7579 31Ga417.2 7683 32Ge*265.16 7786 33As197.2 7989 34Se207.48 8092 35Br*827.47 8394 36Kr*811.52 72.. 96CS8597 37Rb780.0 76 - 96CS8797 38Sr460.86421.777 - 100CS89102 39Y414.4 JYFL.. 102CS91104 40Zr388.65 87 … 102CS94106 41Nb492.45.. 103CS97109 42Mo390.41 … 108 CS 100112 43Tc429.82 101113 44Ru392.7 103115 45Rh369.34 105118 46Pd276.39 109124 47Ag328.16 101 … 110CS111125 48Cd326.1214.5102 … 120CS112126 49In451.3236.5104 - 127CS115133 50Sn452.5 108 - 132CS, RIMS124136 N = 50 Refractory elements N = 82 MOT Collinear

14 14 Menu of Isotopes – “High Mass” Wavelengths, nmLaser SpectroscopyCARIBU IIILSMethodRange > 100/s 51Sb231.22 124138 52Te214.35 129140 53I183.04 131142 54Xe*882.18 116 … 146CS133146 55Cs455.65 118 - 146CS135148 56Ba553.7455.4120 – 146,148CS137150 57La418.84 … @ TRIUMFCS139152 58Ce450.64331… @ JYFLCS141155 59Pr495.14590 144157 60Nd468.34590132 … 150RIS146159 61Pm? 149161 62Sm471.71 138 - 154RIS151164 63Eu459.4604.9138 - 159RIS154166 64Gd432.71 146 - 160RIS156168 65Tb432.64 147... 159RIS159169 66Dy404.71 146 … 165RIS162171 67Ho410.38 151 … 165RIS166171 68Er415.23 150 … 167RIS169172 N = 82 MOT Collinear

15 15 Ion beam Line for Laser Spec Setup PDT 90  3/10 kV -5 kV Post Accel. 50 kV 15 kV 3 kV + 2.9 kV Charge X Fluor. Det. 9 ft Stable Source @ +10/3 kV Lens X/Y Defl.

16 16 Discussion Points Need 1+ charge state for “heavy” isotopes –Operate buncher with neon

17 17 Laser Spectroscopy of Refractory Elements Measured 96–102 Zr with yields > 500 s -1 -> @ CARIBU: 106 Zr ~ 1x10 4 s -1 N=60 shape transition for higher Z: Nb, Mo … -> 109 Mo, 112 Nb 101 Zr I = 3/2 Laser Spectroscopy of Cooled Zirconium Fission Fragments, P. Campbell et al., PRL 89, 082501 (2002) Charge radius vs. deformation:

18 18 Beta-Neutrino Correlation in the Decay of 6 He 6 He 6 Li t 1/2 =0.808 sec 100%  0+0+ 1+1+ E 0 =3.5097 MeV Johnson et al., Phys. Rev. (1963) Best experimental limit: a = - 0.3343 ± 0.0030 21 Na

19 19 Thank You! 8 He Collaboration K. Bailey, R. J. Holt, R. V. F. Janssens, Z.-T. Lu, P.M., T. P. O'Connor, I. Sulai Physics Division, Argonne National Laboratory, USA M.-G. Saint Laurent, J.-Ch. Thomas, A.C.C. Villari, J.A. Alcantara-Nunez, R. Alvez-Conde, M. Dubois, C. Eleon, G. Gaubert, N. Lecesne GANIL, Caen, France G. W. F. Drake - University of Windsor, Windsor, Canada L.-B. Wang – Los Alamos National Laboratory, USA Argon Atom Trappers www.phy.anl.gov/mep/atta/

20 20 Barium Ion Spectroscopy for EXO With He as buffer gas and repumping EXO Collaboration

21 21 Collinear Laser Spectroscopy Well adapted to on-line mass separators Reduction of Doppler width: -> high resolution, high efficiency Need >1000 ions/s for “good cases” with fluorescence detection Higher efficiency with ion detection or decay counting Charge exchange: neutral atoms + metastable states Ion beam ~ 50 keV HV

22 22 Barium Quench Rate PRA 41, 2621 (1990)

23 23 GFMC – Binding Energy vs. Charge Radius

24 24 Atomic Energy Levels of Helium 2 3 S 1 1 1 S 0 3.2 eV 389 nm 1.2 eV 1083 nm 2 3 P 0,1,2 19.8 eV, e-collision in discharge 3 3 P 0,1,2 He discharge metastable He energy level diagram

25 25 CARIBU Layout Cf-252 source 80 mCi -> 1Ci High-resolution mass separator  m/m > 1/20000 Gas catcher Charge breeder Low Energy Experiments RF Cooler & Buncher

26 26 Laser Cooling and Trapping Magneto-Optical Trap (MOT) Cooling: Temperature~ 1 mK,  avoid Doppler shift / width Long observation time: 100 ms Spatial confinement: trap size < 1 mm  single atom sensitivity Selectivity:  no isotopic / isobaric interference Technical challenges: Short lifetime, small samples (<10 6 atoms/s available) Low metastable population efficiency (~ one in 100.000) Precision requirement (100 kHz = Doppler shift @ 4 cm/s )

27 27 GFMC – What happens to the  -core? AV18 + IL2 GFMC proton-proton distributions

28 28 174 Hf Collinear Laser Spectroscopy with Cold & Bunched Beams A. Nieminen et al., PRL 88, 094801 (2002) gate on ion bunch reduce ion energy spread increase S/N by ~ 10 2 Voltage, V

29 29

30 30 Laser Spectroscopy in Linear Paul Trap

31 31 Laser Spectroscopy of Hf in Spherical Paul Trap W.Z. Zhao et al., Hyperf.Int.108,483 (1997) H 2 buffer gas RF syncronized excitation and detection -> 1 GHz resolution 340 nm


Download ppt "Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:"

Similar presentations


Ads by Google