© 2012 Pearson Education, Inc. Lecture Presentation Chapter 6 Flooding.

Slides:



Advertisements
Similar presentations
The transport of weathered materials…
Advertisements

Surface Water Chapter 9.
Warm – Up 9/9 What are the four conditions that influence the amount of runoff an area would have? Get out your surface water notes from Friday to prepare.
Running Water.
Rivers and Streams Chapter 6.1 and 6.2.
Surface Water Streams and Rivers Stream Erosion and Deposition
Section 3: Stream Deposition
Chapter 6: Erosion & Deposition
EARTH SCIENCE Geology, the Environment and the Universe
Objectives Describe how surface water can move weathered materials.
Earth’s six water reservoirs Reservoir% Earth's Water% Usable Water Oceans97.54%----- Glaciers2.15%----- Shallow Groundwater0.31%96.9% Fresh Lakes/Streams0.009%2.8%
© 2011 Pearson Education, Inc. Earth: An Introduction to Physical Geology, 10e Tarbuck & Lutgens.
Water and Floods. Groundwater and Floods The Hydrologic Cycle & Earth’s water Drainage systems — Drainage basins & Rivers Floodplains and levees Floods.
Chapter 6.2 The Work of Streams.
Water Cycle - Running Water
Surface Water: Rivers.
Chapter 13 Surface Water.
Surface Water Chapter 9.
RIVER PROCESSES Introduction to Watershed Science Merritt College Marc Epstein, Instructor.
Rivers and Streams The Hydrologic Cycle. Rivers and Streams Drainage basin or watershed.
Flooding New Orleans, Aug Flooding –Varies with intensity and amount of rainfall –Perhaps the most universally experienced natural hazard Flood.
Chapter 16: Running Water. Hydrologic cycle The hydrologic cycle is a summary of the circulation of Earth’s water supply Processes involved in the hydrologic.
Key Questions for Understanding Surface Water Section 9.1.
Surface Water.
Streams (Rivers). Runoff: H 2 0 that does not sink into ground Most ends up in streams.
Streams and Flooding Chapter 6  Water shapes the earth’s surface  Water also plays a role in human affairs  Floods are the most widely experienced catastrophic.
Streams and Flooding Chapter 6 Water shapes the earth’s surface
Surface Water Chapter 9. Water Cycle Also the hydrologic cycle Driving force is the sun Review: condensation, precipitation, transpiration, evaporation,
Streams (Rivers) Sci 6.1. Runoff: H 2 0 that does not sink into ground Most ends up in streams.
Chapter 11 – WATER ON THE GROUND
13 Surface Water 13.1 Streams and Rivers
River Systems Earth Space Science Mr. Coyle. The Hydrologic Cycle Infiltration = Groundwater System Runoff = Surface Water System Runoff = Precipitation.
Chapter 4: Weathering and Erosion
McKnight's Physical Geography
Surface Water Chapter 9 Notes.
EROSION- The transport of weathered materials….
Stream Erosion and Transport
Landform Geography Landforms of the Fluvial System.
© 2011 Pearson Education, Inc. Running Water Earth, 10e - Chapter 16.
Hydrologic Hazards at the Earth’s Surface
Introduction to hydrology H-ESD : Environmental and Sustainable Development Michael Staudt, GTK.
Rivers and Streams. River Systems A river or stream: any body of water flowing downhill in a well defined channel A river or stream: any body of water.
River Systems. Objective  Students will describe factors that affect the erosive ability of a river and the evolution of a river system.
Rivers Almost half of the water that falls to the Earth’s surface eventually ends up in a stream or river (runoff), where it travels overland to the.
Transpiration Similar to evaporation, this is the loss of water through plants. – Pores in leaves (stomata) are opened to release oxygen and water vapor.
Running Water. Hydrologic Cycle The hydrologic cycle is a summary of the circulation of Earth’s water supply ► Processes involved in the hydrologic cycle.
Physical Geography by Alan Arbogast Chapter 16 Fluvial Systems and Landforms Lawrence McGlinn Department of Geography State University of New York - New.
River Systems Section 2 Section 2: Stream Erosion Preview Key Ideas Parts of a River System Channel Erosion Development of River Channels Tributary, River.
Chapter 2: The Flow of Freshwater. Draw the water cycle diagram in your daybook and label it in your own words. p.41 in your text.
TRANSPORTATION & DEPOSITION in a Stream System.
Streams and Rivers Stream Erosion and Deposition River Valleys Flood Plains and Floods SURFACE WATER.
What is the role of a drainage basin?
STREAMS & RIVERS Chapter 6 1.
Rivers.
Warm-up What are four things that impact INFILTRATION? (the answer is in your notes) After you finish the warm-up put your river basin project in the inbox.
Ch. 13 Modern Earth Science p
HYDROSPHERE Surface Water.
What runs but never walks, Has a mouth but never talks, Has a bed but never sleeps, Has a head but never weeps?
The hydrologic cycle.
Section 1: Surface Water Movement
Chapter 7- Running Water and Groundwater
Water Cycle, Groundwater, Aquifers, Caves
Rivers and Running Water
Rivers and Streams Chapter 6.1 and 6.2.
The Flow of Freshwater.
Running Water Earth Science Chapter 6
The Flow of Water.
River Systems Chapter 15.
Surface Water.
Chapter 6 Flooding.
Presentation transcript:

© 2012 Pearson Education, Inc. Lecture Presentation Chapter 6 Flooding

© 2012 Pearson Education, Inc. Learning Objectives  Understand basic river processes  Understand the process of flooding and know the difference between upstream and downstream floods  Know what geographic regions are at risk from flooding  Know the effects of flooding and the linkages with other natural hazards

© 2012 Pearson Education, Inc. Learning Objectives, cont.  Recognize the benefits of periodic flooding  Understand how people interact with and affect the flood hazard  Be familiar with adjustments we can make to minimize flood deaths and damage

© 2012 Pearson Education, Inc. An Introduction to Rivers  Streams and rivers are part of the hydrologic cycle  Evaporation of water from Earth’s surface  Water returns to ocean underground or across the land  Runoff  Surface drainage  Streams merge into tributaries and then into rivers  Drainage basin, watershed, river basin, or catchment  Area drained by a single stream

© 2012 Pearson Education, Inc. An Introduction to Rivers, cont.  Gradient is slope of river  is shown on longitudinal profile  Steep at high elevations  Headwaters  Decreases as river reaches base level  Lowest elevation of river, ultimately the ocean  Floodplain  Flat surface adjacent to channel

© 2012 Pearson Education, Inc. Figure 6.9

© 2012 Pearson Education, Inc. Materials Transported by Rivers  Rivers transport materials along with water  Total load consists of:  Bed load  Materials that roll, slide, bounce along bottom  Suspended load  Silt and clay particles that are carried in the water  Dissolved load  Materials carried as chemical solution

© 2012 Pearson Education, Inc. Velocity, Discharge, Erosion and Deposition  Rivers are the primary transportation and erosion agent in the rock cycle  Amount of erosion and deposition depends on stream velocity and discharge  Volume of water flowing through a cross section per unit time (cubic meters per second)  Discharge is constant along river  Changes in area lead to changes in velocity  Narrow channels have higher velocity than wide ones  Stream flow widens and slows when moving from high to low gradient  Forms an alluvial fan or delta

© 2012 Pearson Education, Inc. Figure 6.10

© 2012 Pearson Education, Inc. Figure 6.11Figure 6.12

© 2012 Pearson Education, Inc. Channel Patterns and Floodplain Formation  Braided channels  Contain sand and gravel bars that divide and unite a single channel  Tend to be wide and shallow  Meandering channels  Migrate back and forth within a floodplain  Velocity is greater on the outside of curves causing erosion (cut banks)  Rivers slow on the inside of curves causing deposition (point bars)  Floodplains are created during overbank flows  During avulsion streams shift position  Contain pools and riffles

© 2012 Pearson Education, Inc. Figure 6.14

© 2012 Pearson Education, Inc. Flooding  Natural process of overbank flow  Related to:  Amount and distribution of precipitation in drainage basin  Rate at which the precipitation soaks into earth  How quickly surface runoff reaches river  Amount of moisture in the soil

© 2012 Pearson Education, Inc. Flood Description  Flood discharge – discharge of the stream at the point where water overflows the channel banks  Flood stage – height of water in the river  Shown on hydrograph  Graph of stream discharge or water depth over time  Flood stage  Elevation of water surface that is likely to cause damage to property  Recurrence interval  Average time between flood events of a certain size

© 2012 Pearson Education, Inc. Flash Floods  Typical in upper portion of drainage basin and in small basin of tributaries of larger rivers  Caused by intense rainfall of short duration over a relatively small area  Common in arid environments with steep slopes or little vegetation and following breaks of dams, levees, and ice jams  Most people who die during flash floods are in cars

© 2012 Pearson Education, Inc. Downstream Floods  Cover a wide area  Usually produced by storms of long duration that saturate the soil and produce increased runoff  Can be caused by combined runoff from thousands of tributary basins  Characterized by large rise and fall of discharge at a particular location

© 2012 Pearson Education, Inc. Figure 6.20

© 2012 Pearson Education, Inc. Geographic Regions at Risk  Any place that receives precipitation has the potential to flood  Floods are number-one disaster in the United States in twentieth century  All areas of the United States and Canada are vulnerable to floods  A single flood can cause billions of dollars of property damage and more than 200 deaths

© 2012 Pearson Education, Inc. Table 6.1

© 2012 Pearson Education, Inc. Figure 6.21

© 2012 Pearson Education, Inc. Effects of Floods  Primary  Injury and loss of life  Damage caused by currents, debris, and sediment to farms, homes, buildings, railroads, bridges, roads  Erosion and deposition of sediment related to loss of soil and vegetation  Secondary  Short-term river pollution of rivers  Hunger and disease  Homelessness

© 2012 Pearson Education, Inc. Factors Affecting Flood Damage  Land use on floodplain  Depth and velocity of floodwaters  Rate of rise and duration of flooding  Season  Quantity and type of sediment deposited  Effectiveness of forecasting, warning, and evacuation

© 2012 Pearson Education, Inc. Linkages with Other Natural Hazards  Primary effect of hurricanes  Secondary effect of earthquakes and landslides  Fires  Produce shorts in electrical circuits and erode and break natural gas mains  Coastal erosion

© 2012 Pearson Education, Inc. Natural Service Functions  Fertile lands  Periodic deposits of minerals enriches the soil for agriculture  Aquatic ecosystems  Floods clear rivers of debris and sweep in nutrients  Sediment supply  Periodic flooding builds up elevation  Example: New Orleans

© 2012 Pearson Education, Inc. Human Interaction—Land Use Changes  Rivers generally maintain a dynamic equilibrium  Balance between gradient, cross sectional shape, and flow velocity for sediment load  That is, increase or decrease in the amount of water or sediment received by a stream changes gradient or cross- sectional shape, changing the velocity  Land use changes can affect that equilibrium  Forest to farming creates more erosion and sediment  Sediment will build up the gradient of the stream  Stream will flow faster until it can carry greater amount of sediment  Farming to forest sets the opposite into effect

© 2012 Pearson Education, Inc. Figure 6.23Figure 6.24

© 2012 Pearson Education, Inc. Human Interaction—Dam Construction  Upstream water slows down, deposits sediment, forming a delta  Downstream water devoid of sediment, will erode sediment to transport  Slope of the stream will decrease until equilibrium is reached Figure 6.25

© 2012 Pearson Education, Inc. Human Interaction—Urbanization  Increases magnitude and frequency of floods  Urban areas have impervious cover and greater storm sewers  Carries water to stream channels more quickly  Decreases lag time  Causes flashy discharge – rapid rise and fall of floodwater  Reduces stream flow during dry season  Less groundwater is available  Bridges block debris creating dams and flash flooding

© 2012 Pearson Education, Inc. Figure 6.28

© 2012 Pearson Education, Inc. Minimizing the Hazard—Physical Barriers  Include earthen levees, concrete flood walls, reservoirs, and storm water retention basins  Levee breaks cause higher energy flows and bottlenecks in upstream areas  All physical barriers need to be maintained

© 2012 Pearson Education, Inc. Minimizing the Hazard—Channelization  Straightening, deepening, widening, clearing, or lining existing stream channels  Can improve navigation and decrease flooding  Some drawbacks:  Drainage adversely affects plants and animals  Cutting trees eliminates shading and cover for fish and wildlife  Cutting trees eliminates many habitats  Changing the streambed destroys both the diversity of flow patterns and feeding and breeding areas for aquatic life  Degrades the aesthetic

© 2012 Pearson Education, Inc. Figure 6.33

© 2012 Pearson Education, Inc. Minimizing the Hazard—Channel Restoration  Create a natural channel by allowing the stream to meander and reconstruct variable water flow conditions by:  Cleaning urban waste to allow channel to flow freely  Protecting existing channel banks by not removing trees  Planting additional trees or vegetation where necessary  Example: Kissimmee River Restoration in Florida

© 2012 Pearson Education, Inc. Perception of Flood Hazard  Most individuals have inadequate perception of flood problem  Local governments have prepared maps of flood prone areas  Federal government encourages local governments to adopt floodplain management plans  Public safety campaigns have been created to educate public about flash flooding

© 2012 Pearson Education, Inc. Adjustments to the Hazard—Flood Insurance  FEMA manages U.S. National Flood Insurance Program  Maps of 100 year floodplain created to determine risk  Areas where there is a 1 percent chance of floods in any given year  New property owners required to purchase flood insurance  Building codes limit new construction on floodplain  Codes prohibit building on 20 year floodplain

© 2012 Pearson Education, Inc. Figure 6.40

© 2012 Pearson Education, Inc. Adjustment to the Hazard—Flood Proofing  Raising foundation of buildings above the flood hazard  Constructing flood walls or mounds  Using waterproofing construction  Installing improved drains and pumps

© 2012 Pearson Education, Inc. Adjustment to the Hazard—Flood Plain Regulation  Obtain the most beneficial use of floodplains while minimizing flood damage and cost of flood protection  Structural controls may be necessary on heavily used floodplains  Less physical modification of river is ideal  Flood hazard mapping  Shows location of previous flooding  Helpful in land use planning  Relocation  Government purchasing and removing homes damaged by floodwaters

© 2012 Pearson Education, Inc. Table 6.2

© 2012 Pearson Education, Inc. End Flooding Chapter 6