LIP - L ABORATORY OF I NSTRUMENTATION AND EXPERIMENTAL P ARTICLE PHYSICS Lisbon, PORTUGAL THE 12 TH VIENNA CONFERENCE ON INSTRUMENTATION 15-20 FEV 2010.

Slides:



Advertisements
Similar presentations
Advanced GAmma Tracking Array
Advertisements

PET Design: Simulation Studies using GEANT4 and GATE - Status Report - Martin Göttlich DESY.
INSTITUT MAX VON LAUE - PAUL LANGEVIN Fast Real-time SANS Detectors Charge Division in Individual, 1-D Position- sensitive Gas Detectors Patrick Van Esch.
Chapter 8 Planar Scintigaraphy
Studying the Physical Properties of the Atmosphere using LIDAR technique Dinh Van Trung and Nguyen Thanh Binh, Nguyen Dai Hung, Dao Duy Thang, Bui Van.
A scalable DAQ system using the DRS4 sampling chip H.Friederich 1, G.Davatz 1, U.Hartmann 2, A.Howard 1, H.Meyer 1, D.Murer 1, S.Ritt 2, N.Schlumpf 2 1.
CADMIUM ZINC TELLURIDE (CZT) IMAGER INTRODUCTION : 1.SCIENTIFIC REQUIRMENT 2. DETECTORS USED IN IMAGER 3. ELECTRICAL CIRCUITS (FRONT END ELECTRONICSUSED)
1 Physics & Instrumentation in Positron Emission Tomography Paul Vaska, Ph.D. Center for Translational Neuroscience Brookhaven National Laboratory July.
1 A Design of PET detector using Microchannel Plate PMT with Transmission Line Readout Heejong Kim 1, Chien-Min Kao 1, Chin-Tu Chen 1, Jean-Francois Genat.
Design and test of a high-speed beam monitor for hardon therapy H. Pernegger on behalf of Erich Griesmayer Fachhochschule Wr. Neustadt/Fotec Austria (H.
A High-speed Adaptively-biased Current- to-current Front-end for SSPM Arrays Bob Zheng, Jean-Pierre Walder, Henrik von der Lippe, William Moses, Martin.
8/18/2015G.A. Fornaro Characterization of diffractive optical elements for improving the performance of an endoscopic TOF- PET detector head Student: G.
RAD2012, Nis, Serbia Positron Detector for radiochemistry on chip applications R. Duane, N. Vasović, P. LeCoz, N. Pavlov 1, C. Jackson 1,
Preliminary Design of Calorimeter Electronics Shudi Gu June 2002.
1 PET in the detection of breast cancer The ClearPEM Project Encontro Nacional de Ciência — Ciência 2009 Fundação Calouste Gulbenkian de Julho de.
Report on SiPM Tests SiPM as a alternative photo detector to replace PMT. Qauntify basic characteristics Measure Energy, Timing resolution Develop simulation.
The PEPPo e - & e + polarization measurements E. Fanchini On behalf of the PEPPo collaboration POSIPOL 2012 Zeuthen 4-6 September E. Fanchini -Posipol.
Coincidence to Image: PET Imaging Jennifer White Marketing Manager SNS Workshop October 13, 2003.
1 S. E. Tzamarias Hellenic Open University N eutrino E xtended S ubmarine T elescope with O ceanographic R esearch Readout Electronics DAQ & Calibration.
May 2015ECFA meeting1 Spin-off technologies for cancer diagnosis J. Varela, LIP Lisbon ECFA meeting, Coimbra, 15 May, 2015.
Presentation of the ClearPEM-Sonic mammography scanner ClearPEM-Sonic.
First Results from a Test Bench for Very High Resolution Small Animal PET Using Solid-State Detectors Klaus Honscheid for The CIMA Collaboration The Ohio.
A Front End and Readout System for PET Overview: –Requirements –Block Diagram –Details William W. Moses Lawrence Berkeley National Laboratory Department.
21-Aug-06DoE Site Review / Harvard(1) Front End Electronics for the NOvA Neutrino Detector John Oliver Long baseline neutrino experiment Fermilab (Chicago)
Single Photon Emission Computed Tomography
P. Lecoq CERN 1 February 2012 ICTR-PHE 2012, Geneva, February 27-March 2, 2012 Novel multimodal endoscopic probes for simultaneous PET/ultrasound imaging.
Parallel Data Acquisition Systems for a Compton Camera
Lead Fluoride Calorimeter for Deeply Virtual Compton Scattering in Hall A Alexandre Camsonne Hall A Jefferson Laboratory October 31 st 2008.
THE 12 TH VIENNA CONFERENCE ON INSTRUMENTATION FEV 2010 The ClearPEM Breast Imaging Scanner LIP - L ABORATORY OF I NSTRUMENTATION AND EXPERIMENTAL.
Data Acquisition Electronics for Positron Emission Tomography William W. Moses Lawrence Berkeley National Laboratory May 24, 2010 PET Overview PET Electronics.
PSROC, February 2, 2005 Sun Yat-San University Ching-Cheng Hsu National Taiwan University On behalf of NuTel Group Outline :  Overview of NuTel Experiment.
07-Jan-2010 Jornadas LIP 2010, Braga JC. Da SILVA Electronics systems for the ClearPEM-Sonic scanner José C. DA SILVA, LIP-Lisbon Tagus LIP Group * *J.C.Silva,
Filipe Castro Departamento de Física & i3n Universidade de Aveiro C S I(N A ) W AVELENGTH - SHIFTING FIBER GAMMA CAMERA USING S I PM S LIP Lisboa Apr.
Timing Studies of Hamamatsu MPPCs and MEPhI SiPM Samples Bob Wagner, Gary Drake, Patrick DeLurgio Argonne National Laboratory Qingguo Xie Department of.
ClearPEM, J. Varela EuroMedIm06, Marseille, May ClearPEM: a PET imaging system dedicated to breast cancer diagnostics J. Varela LIP/IST Lisbon &
Rebecca Barrett CRYSTAL LAB. PET Detects gamma rays Interact with the crystals and release photons Smaller the crystal, the less uncertainty.
Electron tracking Compton camera NASA/WMAP Science Team  -PIC We report on an improvement on data acquisition for a Time Projection Chamber (TPC) based.
Digitization in EMC simulation Dmytro Melnychuk, Soltan Institute for Nuclear Studies, Warsaw, Poland.
P. Rodrigues, A. Trindade, L.Peralta, J. Varela GEANT4 Medical Applications at LIP GEANT4 Workshop, September – 4 October LIP – Lisbon.
P. Lecoq CERN February SiPM Workshop, CERN, February, 2011 New Approaches in Scintillation Detectors in the Context of HEP Calorimetry and.
Introduction to the ClearPEM projects
1 Nuclear Medicine SPECT and PET. 2 a good book! SR Cherry, JA Sorenson, ME Phelps Physics in Nuclear Medicine Saunders, 2012.
1 19 th January 2009 M. Mager - L. Musa Charge Readout Chip Development & System Level Considerations.
1 Rome, 14 October 2008 Joao Varela LIP, Lisbon PET-MRI Project in FP7 LIP Motivations and Proposals.
A Multi-Threshold Method for TOF-PET Signal Processing Heejong Kim 1, Chien-Min Kao 1, Qingguo Xie 1, Chin-Tu Chen 1, Octavia Biris 2, Jialin Lin 2, Fukun.
RPC February 2010 SPATIAL RESOLUTION OF HUMAN 3D RPC-PET SYSTEM 1 LIP, Laboratório de Instrumentação e Física Experimental de Partículas, Coimbra,
Beam Profile Monitor for Spot-Scanning System Yoshimasa YUASA.
Update on works with SiPMs at Pisa Matteo Morrocchi.
Institute of Basic Science Rare Isotope Science Project PANGEA P hoton detector system for A stro-science and N uclear physics with GE rmanium A rray 2015.
May 10-14, 2010CALOR2010, Beijing, China 1 Readout electronics of the ALICE photon spectrometer Zhongbao Yin *, Lijiao Liu, Hans Muller, Dieter Rohrich,
PET Imaging Positron Emission Tomography
Simulations in Medical Physics Y. TOUFIQUE*, R.CHERKAOUI EL MOURSLI*, M.KACI**, G.AMOROS**, *Université Mohammed V –Agdal, Faculté des Sciences de Rabat,
3/06/06 CALOR 06Alexandre Zabi - Imperial College1 CMS ECAL Performance: Test Beam Results Alexandre Zabi on behalf of the CMS ECAL Group CMS ECAL.
 13 Readout Electronics A First Look 28-Jan-2004.
1 PET Project: current and future developments A. Trindade – PET/LIP Group Jornadas LIP, January 2008 Outline:  Development of PET technologies applied.
LISHEP 2015, Manaus 1 PET Technologies and developments Jose DA SILVA LIP-Lisboa Manaus
+ Voxel Imaging Pizza Gianluca De Lorenzo. + Positron Emission Tomography April Gianluca De Lorenzo.
Physics & Instrumentation in Positron Emission Tomography
Trigger System for a Thin Time-of-flight PET scanner
Journées VLSI-FPGA-PCB Juin 2010 Xiaochao Fang
High-Speed Data Acquisition Electronics for a PEM Scanner
Detailed simulations of a full-body RPC-PET scanner
Development of a High Precision Axial 3-D PET for Brain Imaging
A First Look J. Pilcher 12-Mar-2004
Next generation 3D digital SiPM for precise timing resolution
BESIII EMC electronics
Pre-installation Tests of the LHCb Muon Chambers
P. Rodrigues, A. Trindade, L.Peralta, J. Varela
HE instrument and in-orbit performance
Presentation transcript:

LIP - L ABORATORY OF I NSTRUMENTATION AND EXPERIMENTAL P ARTICLE PHYSICS Lisbon, PORTUGAL THE 12 TH VIENNA CONFERENCE ON INSTRUMENTATION FEV 2010 The ClearPEM Breast Imaging Scanner Jorge A. NEVES On behalf of the ClearPEM Collaboration PEM Collaboration

Motivation Breast Cancer and Positron Emission Tomography 2/ Breast cancer is the most common cancer among women  mean incidence rate of 1.2 million females per year worldwide PET is a functional imaging technique that has demonstrated large potential for breast cancer detection - Positron Emission Mammography (PEM)  Patient is injected with 18 F-FDG radiotracer that fix in tumor cells and decays by positron emission. The 2 γ photons resulting by the positron-electron annihilation are detected in temporal coincidence to imaging the biodistribution of the radiotracer. The ClearPEM Breast Imaging Scanner Jorge A. NEVES THE 12TH VIENNA CONFERENCE ON INSTRUMENTATION FEV /18

 The ClearPEM Scanner  Detector Calibration  Energy and Time Resolution  Image Reconstruction  Conclusions Outline The ClearPEM Scanner The ClearPEM Breast Imaging Scanner Jorge A. NEVES THE 12TH VIENNA CONFERENCE ON INSTRUMENTATION FEV /18

Good spatial resolution ( ~ 1.5 mm in whole FoV)  Fine crystal segmentation (2x2 mm)  Dual APD readout of individual crystal pixels  DoI measurements with good resolution (FWHM ~ 2 mm) High Sensitivity  Long LYSO:Ce crystal (20 mm)  Two detector plates with large active area (17x15cm 2 FOV) Reduced Random Background ( ~ 30%)  Large flux of single photons (up to 10 MHz)  Coincidence time resolution of ~ 4 ns FWHM The ClearPEM Scanner The ClearPEM Characteristics The ClearPEM Breast Imaging Scanner Jorge A. NEVES THE 12TH VIENNA CONFERENCE ON INSTRUMENTATION FEV /18

ClearPEM MOVIE The ClearPEM Scanner The ClearPEM Breast Imaging Scanner Jorge A. NEVES THE 12TH VIENNA CONFERENCE ON INSTRUMENTATION FEV /18

The ClearPEM Scanner The ClearPEM Detector Modules Two Detector Plates  160x180 mm 2 active area  6144 scintillation crystals LYSO:Ce (emit visible light when high energy photons interact with them)  APD pixel channels ( Highly sensible photo- detector. Generate pulses in response to scintilation light)  Double readout of crystal pixels for Depth-of- Interaction measurent (to minimize parallax effect)  Water cooling system (18.0 ± 0.1 °C) Hamamatsu S8550 Avalanche Photo Diode LYSO:Ce 2x2x20 mm 3 crystal 4x8 crystal matrices made of BaSO 4 walls 384 APD arrays, Operating Voltage V ε ~ 511 keV 7.4 g.cm -3 The ClearPEM Breast Imaging Scanner Jorge A. NEVES THE 12TH VIENNA CONFERENCE ON INSTRUMENTATION FEV /18

The ClearPEM Scanner FrontEnd ASIC ASIC or APD signal processing Charge Amplifier Characteristics  Technology: AMS 0.35 μm CMOS, 70 mm 2 Area  Input: 192 channels  Output: 2 highest channels (192:2 mux) -> readout Compton events  Max Input Charge: 90 fC  Noise: ENC ~ 1300 e- ( Baseline RMS = 2.2 ADC counts = 5 keV)  Shaping: 40 ns  Analog Memories: 10 pulse samples  Clock Frequency: MHz  Power: 3.6 mW/channel The ClearPEM Breast Imaging Scanner Jorge A. NEVES THE 12TH VIENNA CONFERENCE ON INSTRUMENTATION FEV /18

12 cm 4.5 cm ASICs (2x192 channels) FrontEnd Board Modules (12x32 crystals, 24 APDs) Super Module  2 FrontEnd Boards and 12 Detector Modules  Processes 768 APD channels FrontEnd Board  Contains 2 ASICs for signal selection  2 High-speed dual ADCs (10bits, 100MHz)  1 LVDS Channel Link Transmitter (600Mbps) Detector Head  8 Super Modules (16 for both DHs)  1 Service Board (HV & LV distribution, temperature monitoring)  2 water cooling plates The ClearPEM Scanner FrontEnd Electronics 192 Detector Modules (96 per DH) HV matrix Service Board The ClearPEM Breast Imaging Scanner Jorge A. NEVES THE 12TH VIENNA CONFERENCE ON INSTRUMENTATION FEV /18

The ClearPEM Scanner Off-Detector and Data Acquisition Electronics DAE System – L1 Trigger/DAQ 4 DAQ Boards (Slave)  8 Xlinx TM FPGA  First data filtering to identify usefull data (find Top- Bottom crystal coincidences)  Check signal integrity calculating basic parameters  Send relevant data to TGR/DCC Board 1 TGR/DCC – Trigger & Data Concentrator Board (Master)  1 Xilinx TM FPGA  DAQ Board’s arbitration  System’s Sync and Reset  Responsible for the identification of coincidence between detector heads  Sends relevant data to Acquisition Server (S-Link Bridge) Data Transfer Bandwidth 6.4 Gbps Trigger/DCC  Acquisition Server 800 MBps S-Link FedKit (PCI) 60 MBps USB MBps Storage Rate Coincidence Triggering Rate 800 kHz 19’’ crate 2cPCI backplanes The ClearPEM Breast Imaging Scanner Jorge A. NEVES THE 12TH VIENNA CONFERENCE ON INSTRUMENTATION FEV /18

The ClearPEM Scanner Scanner IPO Portuguese Institute of Oncology - Porto Examination Bed Detector Heads Robotic structure The ClearPEM Breast Imaging Scanner Jorge A. NEVES THE 12TH VIENNA CONFERENCE ON INSTRUMENTATION FEV /18

511 keV   APD pixel LYSO:Ce Crystal Relative Gain Distribution of Energy Calibrations Constants  3 Calibration constants per crystal (Top and Bottom readout) Detector Calibration Absolute Gain Distribution of pulse peak time Requires > 4%/mm for DOI resolution < 2 mm FWHM DOI Calibration The ClearPEM Breast Imaging Scanner Jorge A. NEVES THE 12TH VIENNA CONFERENCE ON INSTRUMENTATION FEV /18

Tmax Tpeak  Photon time is extracted from the pulse samples fitted by the function: Energy and Time Resolution Time Measurements Typical pulse 50 MHz sampling The coincidence time resolution of the whole scanner is 5.2 ns FWHM The ClearPEM Breast Imaging Scanner Jorge A. NEVES THE 12TH VIENNA CONFERENCE ON INSTRUMENTATION FEV /18 Time Calibration

Energy and Time Resolution Energy Measurements  Average energy resolution at 511 keV for the full scanner is 16.0 % 22 Na spectra for all crystals Photopeak measurements 511 keV photopeak compton  Good energy linearity  Energy resolution and photopeak position not dependent of DOI The ClearPEM Breast Imaging Scanner Jorge A. NEVES THE 12TH VIENNA CONFERENCE ON INSTRUMENTATION FEV /18

Without DOI InformationWith DOI Information 1.2 mm FWHM Image Reconstruction ClearPEM Spatial Resolution Point Source Imaging  22 Na point source in a grid with 5 mm pitch  Energy window keV  Sinograms of 16 source positions are added  3D-OSEM/STIR Reconstruction Spatial Resolution  Transaxial 1.2 mm FWHM (corrected by source size ~ 1 mm) DOI Effect  Images without using DOI information show considerable blurring The ClearPEM Breast Imaging Scanner Jorge A. NEVES THE 12TH VIENNA CONFERENCE ON INSTRUMENTATION FEV /18

Image Reconstruction ClearPEM Spatial Resolution Derenzo Phantom Imaging  Sealed phantom with 22 Na gel  20 μ Ci activity (T 1/2 = 2.6y)  Active area: 35 mm Ø x 38.1 mm length Phantom Draw 3.0 mm 2.5 mm 2.0 mm 1.5 mm 1.2 mm Dist. = 150 mm Takes = 4 x 20 min keV energy window 6 ns time window 3.0 mm 2.5 mm 2.0 mm 1.5 mm 1.2 mm D-OSEM The ClearPEM Breast Imaging Scanner Jorge A. NEVES THE 12TH VIENNA CONFERENCE ON INSTRUMENTATION FEV /18

Image Reconstruction Initial Clinical Tests Example os a typical exam  dose 7.6 mCi  150 mm detector plate opening  4 angular orientations  coincidence windom ± 4 ns  energy window keV  low coincidences rate ~ 1.2 kHz  fraction of randoms in FoV IS 35% Reconstruction  3D-OSEM  simple normalization correction  randoms, attenuation and scatter correction not applied  22 Na source data added to sinogram, emulating lesion (L/B ~ 4 for 3 mm lesion) The ClearPEM Breast Imaging Scanner Jorge A. NEVES THE 12TH VIENNA CONFERENCE ON INSTRUMENTATION FEV /18

ClearPEM-Sonic Conclusions The ClearPEM Breast Imaging Scanner Jorge A. NEVES THE 12TH VIENNA CONFERENCE ON INSTRUMENTATION FEV /18  ClearPEM electronics is one of the most innovative systems available for APD-based PET systems  Excellent detector performance  Time Resolution: 5.2 ns FWHM  Energy Resolution: 16 %  Spatial Resolution: 1.2 mm FWHM  Initial clinical trials have been started  Needs and efforts on image corrections

ClearPEM-Sonic The ClearPEM Breast Imaging Scanner Jorge A. NEVES THE 12TH VIENNA CONFERENCE ON INSTRUMENTATION FEV /18 E. Albuquerque 1, F. G. Almeida 2,13, P. Almeida 3, E. Auffray 10, J. Barbosa 2, A. L. Bastos 9, V. Bexiga 1, R. Bugalho 4, C. Cardoso 4, S. Carmona 8, J.F. Carneiro 2, B. Carriço 4, C. S. Ferreira 4, N. C. Ferreira 5, M. Ferreira 4, M. Frade 4, F. Gonçalves 1, C. Guerreiro 5, P. Lecoq 10, C. Leong 1, P. Lousã 6, P. Machado 1, M. V. Martins 3, M. C. Martins 6, N. Matela 3, R. Moura 4, J.A.Neves 4, P. Neves 6, N. Oliveira 3, C. Ortigão 4, F. Piedade 6, J. F. Pinheiro 4, P. Relvas 6, A. Rivetti 10, P. Rodrigues 4, I. Rolo 4, M. Rolo 4, A. I. Santos 8, J. Santos 2, M. M. Silva 1, S. Tavernier 11, I. C. Teixeira 1,9, J. P. Teixeira 1,9, J. C. Silva 4,10, R. Silva 4, A. Trindade 4, J. Varela 4, 10 1 INESC-ID, 2 INEGI, 3 IBEB/FCUL, 4 LIP, 5 IBILI/FMUC, 6 INOV, 8 HGO, 9 IPO, 10 CERN, 11 VUB Funded by SFRH/BD/33667/2009 Acknowledgments Thank you!