1 UMR Lock 20 through 25 Simulation Model Inland Waterway Lock/Vessel Optimization Study Upper Mississippi River Locks 20-25 Center For Transportation.

Slides:



Advertisements
Similar presentations
1 Radio Maria World. 2 Postazioni Transmitter locations.
Advertisements

Números.
University Paderborn 07 January 2009 RG Knowledge Based Systems Prof. Dr. Hans Kleine Büning Reinforcement Learning.
Trend for Precision Soil Testing % Zone or Grid Samples Tested compared to Total Samples.
Trend for Precision Soil Testing % Zone or Grid Samples Tested compared to Total Samples.
AGVISE Laboratories %Zone or Grid Samples – Northwood laboratory
Trend for Precision Soil Testing % Zone or Grid Samples Tested compared to Total Samples.
PDAs Accept Context-Free Languages
ALAK ROY. Assistant Professor Dept. of CSE NIT Agartala
Fill in missing numbers or operations
/ /17 32/ / /
Reflection nurulquran.com.
EuroCondens SGB E.
Worksheets.
Reinforcement Learning
Slide 1Fig 26-CO, p.795. Slide 2Fig 26-1, p.796 Slide 3Fig 26-2, p.797.
Slide 1Fig 25-CO, p.762. Slide 2Fig 25-1, p.765 Slide 3Fig 25-2, p.765.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Sequential Logic Design
Addition and Subtraction Equations
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
Disability status in Ethiopia in 1984, 1994 & 2007 population and housing sensus Ehete Bekele Seyoum ESA/STAT/AC.219/25.
By John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman
1 When you see… Find the zeros You think…. 2 To find the zeros...
EQUS Conference - Brussels, June 16, 2011 Ambros Uchtenhagen, Michael Schaub Minimum Quality Standards in the field of Drug Demand Reduction Parallel Session.
UMR Statistical Analysis Inland Navigation Appointment System Study Upper Mississippi River Locks Center For Transportation Studies University Of.
Add Governors Discretionary (1G) Grants Chapter 6.
CALENDAR.
CHAPTER 18 The Ankle and Lower Leg
Summative Math Test Algebra (28%) Geometry (29%)
ASCII stands for American Standard Code for Information Interchange
The 5S numbers game..
突破信息检索壁垒 -SciFinder Scholar 介绍
A Fractional Order (Proportional and Derivative) Motion Controller Design for A Class of Second-order Systems Center for Self-Organizing Intelligent.
Break Time Remaining 10:00.
The basics for simulations
A sample problem. The cash in bank account for J. B. Lindsay Co. at May 31 of the current year indicated a balance of $14, after both the cash receipts.
PP Test Review Sections 6-1 to 6-6
Mental Math Math Team Skills Test 20-Question Sample.
Figure 3–1 Standard logic symbols for the inverter (ANSI/IEEE Std
TCCI Barometer March “Establishing a reliable tool for monitoring the financial, business and social activity in the Prefecture of Thessaloniki”
1 Prediction of electrical energy by photovoltaic devices in urban situations By. R.C. Ott July 2011.
Dynamic Access Control the file server, reimagined Presented by Mark on twitter 1 contents copyright 2013 Mark Minasi.
TCCI Barometer March “Establishing a reliable tool for monitoring the financial, business and social activity in the Prefecture of Thessaloniki”
Progressive Aerobic Cardiovascular Endurance Run
1..
Visual Highway Data Select a highway below... NORTH SOUTH Salisbury Southern Maryland Eastern Shore.
MaK_Full ahead loaded 1 Alarm Page Directory (F11)
TCCI Barometer September “Establishing a reliable tool for monitoring the financial, business and social activity in the Prefecture of Thessaloniki”
When you see… Find the zeros You think….
2011 WINNISQUAM COMMUNITY SURVEY YOUTH RISK BEHAVIOR GRADES 9-12 STUDENTS=1021.
Before Between After.
2011 FRANKLIN COMMUNITY SURVEY YOUTH RISK BEHAVIOR GRADES 9-12 STUDENTS=332.
ST/PRM3-EU | | © Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying.
25 seconds left…...
2.10% more children born Die 0.2 years sooner Spend 95.53% less money on health care No class divide 60.84% less electricity 84.40% less oil.
Subtraction: Adding UP
Numeracy Resources for KS2
1 Non Deterministic Automata. 2 Alphabet = Nondeterministic Finite Accepter (NFA)
Static Equilibrium; Elasticity and Fracture
ANALYTICAL GEOMETRY ONE MARK QUESTIONS PREPARED BY:
Resistência dos Materiais, 5ª ed.
PSSA Preparation.
UNDERSTANDING THE ISSUES. 22 HILLSBOROUGH IS A REALLY BIG COUNTY.
Introduction into Simulation Basic Simulation Modeling.
Chart Deception Main Source: How to Lie with Charts, by Gerald E. Jones Dr. Michael R. Hyman, NMSU.
1 Non Deterministic Automata. 2 Alphabet = Nondeterministic Finite Accepter (NFA)
Introduction Embedded Universal Tools and Online Features 2.
Schutzvermerk nach DIN 34 beachten 05/04/15 Seite 1 Training EPAM and CANopen Basic Solution: Password * * Level 1 Level 2 * Level 3 Password2 IP-Adr.
Presentation transcript:

1 UMR Lock 20 through 25 Simulation Model Inland Waterway Lock/Vessel Optimization Study Upper Mississippi River Locks Center For Transportation Studies University Of Missouri, St. Louis 15 June 2005

2 The Need for a Simulation Model Why is a simulation model needed to evaluate alternative traffic management policies on the UMR? -The seasonality of traffic demands, vessel operations, and lock operations -The interdependence of individual vessel lockage times -The scope of the management measures under evaluation and their systemic impacts

3 The Bi-modal Distribution of Lockage Times at UMR Locks for

4 The Distribution of the Wait For Lock Service at UMR Locks for

5 The Seasonality Of System Use Total Lockages by Month at UMR Locks for

6 Seasonality Of System Use (Continued) The Number of Tows Using the System

7 Seasonality of the Wait For Lockage Time Distributions

8 Seasonality of Vessel Lockage Time Distributions

9 Seasonality of Non-Stop Pool Travel Time Distributions

10 Seasonality of Total Queue Sizes Locks 20 Through

11 Trend in Seasonality of Total Queue Sizes Locks 20 Through

12 The Simulation Model A discrete event simulation model of the segment of the UMR composed on Locks 20 through 25 and connecting pools is constructed using Micro Analysis and Designs Micro Saint Sharp. Micro Saint Sharp is a widely used, commercially available software package designed to build discrete event simulation models that facilitates model building and animation. Any user with a Micro Saint Sharp license may use and alter the simulation model. Simulation results may be analyzed in Micro Saint, any statistical package, and most spreadsheet applications.

13 The Simulation Model Vessels (large tows, small tows, and recreation craft) enter the system at one of ten entry points following seasonally estimated, independent inter- arrival time distributions. Vessels complete a lockage after system entry and then make a seasonally adjusted decision to: (1) continue to the next sequential lock in their direction of travel; (2) stop; or (3) re-configure their flotilla. If vessels stop or re-configure their flotilla, they are terminated in the appropriate pool after completing their lockage and then later regenerated in the pool in which they terminated. All recreation craft are terminated after a single lockage.

14 The Simulation Model Vessel lockage times depend on the vessel configuration, the direction of travel, the month of occurrence, and the state of the lock when the lockage occurs. Pool transit times depend on the vessel configuration, the direction of travel, and the month of occurrence. Periods of lock closure are modeled as independent occurrences with independent durations.

15 The Simulation Model Monthly and annual measures of system output and performance such as the categorized tow-miles produced, categorized utilized tow hours, categorized lockage times and utilizations, categorized lock delay times, and categorized pool transit times are recorded. The performance measures are analyzed using both Micro Saints built in analytical tools and SPSS.

16 Simulation Model Schematic Diagram Tow Traffic

17 Simulation Model Schematic Diagram Recreation Vessel Traffic

18 Simulation Model Detail Lockages There are 360 classes of lockages (lognormal distributions) at each lock characterized by: -Direction of vessel travel (upbound, downbound); -Class of vessel (multi-cut tow, single cut tow, jackknife, knockouts, and recreation traffic); -Lockage type (fly, turnback, exchange); and -Month of occurrence. Locks are periodically made not available to service vessels (exponential distributions).

19 Simulation Model Detail Vessel Traffic Seasonally adjusted independent entrances of four different types of tows at ten separate system locations (exponential distributions) Seasonally adjusted transition probabilities for directing each class of tow movement through the system Seasonally adjusted independent lock-specific recreation vessel arrivals (exponential distributions) Seasonally adjusted and directionally specific travel times for four separate tow classes through the lock pools (lognormal distributions)

20 Comparison of 100 Runs of the Simulation Model with the Omni Data

21 Comparison of 100 Runs of the Simulation Model with the Omni Data

22 Comparison of 100 Runs of the Simulation Model with the Omni Data

23 Results of 100 Simulations with Existing Traffic Management N Minimum (hours) Maximum (hours) Mean (hours) Std. Deviation (hours) Wait Time - All Vessels All Locks 10031, , , , Total Observable Tow Time , , , , Tow Time Large Tows , , , , Tow Time Small Tows 10057, , , , Tow Wait Lock , , , Tow Wait Lock , , , Tow Wait Lock , , , , Tow Wait Lock , , , , Tow Wait Lock , , , , Valid N (listwise)100

24 Results of 100 Simulations with an Example of a Locally Optimal Queue Re- sequencing Policy (Fastest First) N Minimum (hours) Maximum (hours) Mean (hours) Std. Deviation (hours) Wait Time - All Vessels All Locks 10029, , , , Total Observable Tow Time , , , , Tow Time Large Tows , , , , Tow Time Small Tows 10052, , , , Tow Wait Lock , , , Tow Wait Lock , , , Tow Wait Lock , , , , Tow Wait Lock , , , , Tow Wait Lock , , , , Valid N (listwise)100

25 Changes Resulting from a Locally Optimal Queue Re-sequencing Policy (Fastest First) N Minimum (hours) Maximum (hours) Mean (hours) Std. Deviation (hours) Wait Time - All Vessels All Locks , , , Total Observable Tow Time , , , , Tow Time Large Tows 100 3, , , Tow Time Small Tows , , , Tow Wait Lock Tow Wait Lock Tow Wait Lock , Tow Wait Lock , Tow Wait Lock , , Valid N (listwise)100

26 Vessel Re-sequencing Discussion Mean annual reduction of approximately 3,600 total tow hours required to complete the same set of vessel itineraries. This reduction represents approximately a 2% decrease in equipment time needed to complete the same set of movements through these five locks. Some vessels win and other vessels lose. System performance variability is also reduced.