Review Questions 1. How are polymers formed (what type of reaction)? 2. What occurs in this reaction? 3. How are polymers broken down (what type of reaction)?

Slides:



Advertisements
Similar presentations
Carbohydrates and Lipids Section 1-3. Macromolecules Macromolecules are huge molecules made up of smaller subunits Macromolecules are polymers of single.
Advertisements

The Structure and Function of Macromolecules: Carbohydrates, Lipids & Phospholipids.
Biology 112 Chapter 5 Macromolecules. All living things are made up of four classes of large biological molecules: carbohydrates, lipids, proteins, and.
1 Macromolecules – Are large molecules composed of a large number of repeated subunits – Are complex in their structures Figure 5.1.
Objectives: 1. Identify examples 2. Identify formulas 3. How are they put together or broken down? 4. Basic facts.
CHAPTER 5 THE STRUCTURE AND FUNCTION OF MACROMOLECULES Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Section B: Carbohydrates.
Polysaccharides are polymers of hundreds to thousands of monosaccharides joined by glycosidic linkages. One function of polysaccharides is as an energy.
The Structure and Function of Large Biological Molecules
CHAPTER 2 THE STRUCTURE AND FUNCTION OF MACROMOLECULES
Structure & Function of Large Biological Molecules (Macromolecules)
Organic Chemistry.
Notes Chapter 5 p.2 : Lipids
CHAPTER 5 THE STRUCTURE AND FUNCTION OF MACROMOLECULES
Carbohydrates & Lipids
Lipids - Diverse Hydrophobic Molecules 1. Fats store large amounts of energy 2.Phospholipids are major components of cell membranes 3.Steroids include.
CHAPTER 2 THE STRUCTURE AND FUNCTION OF MACROMOLECULES Lipids - Diverse Hydrophobic Molecules 1.Fats store large amounts of energy 2.Phospholipids are.
Chapter 5 Large Molecules are the Hallmark of Life.
Introduction Lipids are an exception among macromolecules because they do not have polymers. The unifying feature of lipids is that they all have little.
* Poly = many; -mer = part. A polymer is a large molecule consisting of many smaller sub-units bonded together called monomers * Monomers are covalently.
AP Biology Macromolecules. AP Biology Macromolecules  Smaller organic molecules join together to form larger molecules Macromolecules  4 major classes.
Carbon and the Molecular Diversity of Life
Macromolecules Macromolecules are large, functional, carbon based structures that serve specific functions in living organisms. – 4 basic types Carbohydrates.
Chapter 5: Macromolecules Macromolecules A large molecule in a living organism –Proteins, Carbohydrates, Nucleic Acids Polymer- long molecules built.
Chapter 5: The Structure and Function of Macromolecules.
BELLRINGER 1.What are functional groups? 2.Which functional groups are found on amino acids?
Carbohydrates - Fuel and Building Material Pgs Sugars, the smallest carbohydrates, serve as fuel and carbon sources 2.Polysaccharides, the polymers.
AP Biology Discussion Notes Wednesday 9/30. Goals for Today: 1.Be able to describe and compare the building, breaking, components, and functions of Lipids/Fats.
CHAPTER 5 THE STRUCTURE AND FUNCTION OF MACROMOLECULES Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Section C: Lipids - Diverse.
Aim: What is the structure and function of carbohydrates? Homework Reminder:. Do Now: In Regents Chemistry, you learned about aldehydes and ketones. What.
The Structure and Function of Large Biological Molecules
Macromolecules Goal Know the structure and function of all 4 macromolecules.
BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece Lawrence.
AP Biology CH. 5 Macromolecules Building Blocks of Life.
Review Question 1 How many molecules of water are needed to completely hydrolyze a polymer that is 10 monomers long? 9.
5.3: Lipids Introduction Lipids are a diverse group of hydrophobic molecules Lipids are the one class of large biological molecules that do not form polymers.
The Structure and Function of Macromolecules Chapter carbohydrates.
Chapter 3 Carbohydrates and Lipids. You Must Know The cellular functions of carbohydrates and lipids. How the sequence and subcomponents of carbohydrates.
NOTES: 2.3, part 1 - Macromolecules, Carbs & Lipids.
Macromolecules Chapter 5 All are polymers Monomer – subunit of polymer Macromolecule – large organic polymer Those found in living systems: Carbohydrates.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Overview: The Molecules of Life Within cells, small organic molecules are joined.
Overview: The Molecules of Life 4 Classes of organic molecules make up living things: 1.Carbohydrates 2.Lipids 3.Proteins 4.Nucleic acids.
Carbohydrates Carbohydrates serve as fuel and building material
Chapter 2: The Structure and Function of Macromolecules.
The Structure and Function of Large Biological Molecules Chapter 5.
Chapter 5 The Structure and Function of Macromolecules Intro & Carbohydrates.
The Structure and Function of Large Biological Molecules Lipids
Chapter 5 The Structure and Function of Large Biological Molecules Carbohydrates.
NOTES: 2.3, part 1 - Macromolecules, Carbs & Lipids
Large Molecules are the Hallmark of Life
CHAPTER 5 THE STRUCTURE AND FUNCTION OF MACROMOLECULES
AP Biology Discussion Notes
The Structure and Function of Large Biological Molecules
Chapter 5 The Structure and Functions of Large Biological Molecules
The Structure and Function of Large Biological Molecules
Molecules of Life All living things are made up of four classes of large molecules: Carbohydrates, lipids, proteins, and nucleic acids. Macromolecules.
Chapter 5.
Carbon and the Molecular Diversity of Life
Concept 5.3: Lipids are a diverse group of hydrophobic molecules
Carbohydrates and Lipids
The Structure and Function of Large Biological Molecules
The Structure and Function of Macromolecules
Review Question 1 How many molecules of water are needed to completely hydrolyze a polymer that is 4 monomers long? 3.
Macromolecules: Ch. 5 Part 1
CHAPTER 5 THE STRUCTURE AND FUNCTION OF MACROMOLECULES
CHAPTER 5 THE STRUCTURE AND FUNCTION OF MACROMOLECULES
Carbohydrates Carbohydrates are composed of C, H, O carbo - hydr - ate
Macromolecules Introduction
The Structure and Function of Macromolecules
1.0 MOLECULES OF LIFE BY : MDM. NURFAZLINI ISMAIL (MDM FAZ)
The Structure and Function of Macromolecules
Presentation transcript:

Review Questions 1. How are polymers formed (what type of reaction)? 2. What occurs in this reaction? 3. How are polymers broken down (what type of reaction)? 4. What occurs during the break down reaction? 1 & 2 Condensation reaction – two monomers are covalently bonded to each other with a loss of water. In this reaction each monomer contributes part of the water molecule that is formed. 3 & 4 Hydrolysis reaction – the bond between monomers is broken by the addition of water. In this reaction each monomer takes part of the water molecule that is added.

Overview: The Molecules of Life All living things are made up of four classes of large biological molecules: carbohydrates, lipids, proteins, and nucleic acids Within cells, small organic molecules are joined together to form larger molecules Macromolecules are large molecules composed of thousands of covalently connected atoms Molecular structure and function are inseparable Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Concept 5.1: Macromolecules are polymers, built from monomers A polymer is a long molecule consisting of many similar building blocks These small building-block molecules are called monomers Three of the four classes of life’s organic molecules are polymers: – Carbohydrates – Proteins – Nucleic acids Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

A condensation reaction or more specifically a dehydration reaction occurs when two monomers bond together through the loss of a water molecule Enzymes are macromolecules that speed up the dehydration process Polymers are disassembled to monomers by hydrolysis, a reaction that is essentially the reverse of the dehydration reaction The Synthesis and Breakdown of Polymers Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 5-2 Short polymer HO 123H H Unlinked monomer Dehydration removes a water molecule, forming a new bond HO H2OH2O H Longer polymer (a) Dehydration reaction in the synthesis of a polymer HO H H2OH2O Hydrolysis adds a water molecule, breaking a bond HO H H (b) Hydrolysis of a polymer

The Diversity of Polymers Each cell has thousands of different kinds of macromolecules Macromolecules vary among cells of an organism, vary more within a species, and vary even more between species An immense variety of polymers can be built from a small set of monomers 2 3 HOH Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Concept 5.2: Carbohydrates serve as fuel and building material Carbohydrates include sugars and the polymers of sugars The simplest carbohydrates are monosaccharides, or single sugars Carbohydrate macromolecules are polysaccharides, polymers composed of many sugar building blocks Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Sugars Monosaccharides have molecular formulas that are usually multiples of CH 2 O Glucose (C 6 H 12 O 6 ) is the most common monosaccharide Monosaccharides are classified by – The location of the carbonyl group (as aldose or ketose) – The number of carbons in the carbon skeleton Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 5-3 Dihydroxyacetone Ribulose Ketoses Aldoses Fructose Glyceraldehyde Ribose Glucose Galactose Hexoses (C 6 H 12 O 6 ) Pentoses (C 5 H 10 O 5 ) Trioses (C 3 H 6 O 3 )

Though often drawn as linear skeletons, in aqueous solutions many sugars form rings Monosaccharides serve as a major fuel for cells and as raw material for building molecules Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 5-4 (a) Linear and ring forms(b) Abbreviated ring structure

A disaccharide is formed when a dehydration reaction joins two monosaccharides This covalent bond is called a glycosidic linkage Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 5-5 (b) Dehydration reaction in the synthesis of sucrose GlucoseFructose Sucrose MaltoseGlucose (a) Dehydration reaction in the synthesis of maltose 1–4 glycosidic linkage 1–2 glycosidic linkage

Polysaccharides Polysaccharides, the polymers of sugars, have storage and structural roles The structure and function of a polysaccharide are determined by its sugar monomers and the positions of glycosidic linkages Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Storage Polysaccharides Starch, a storage polysaccharide of plants, consists entirely of glucose monomers – Plants store surplus starch as granules within chloroplasts and other plastids Glycogen is a storage polysaccharide in animals – Humans and other vertebrates store glycogen mainly in liver and muscle cells Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 5-6 (b) Glycogen: an animal polysaccharide Starch Glycogen Amylose Chloroplast (a) Starch: a plant polysaccharide Amylopectin Mitochondria Glycogen granules 0.5 µm 1 µm

Structural Polysaccharides The polysaccharide cellulose is a major component of the tough wall of plant cells Like starch, cellulose is a polymer of glucose, but the glycosidic linkages differ The difference is based on two ring forms for glucose: alpha (  ) and beta (  ) Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 5-7 (a)  and  glucose ring structures  Glucose  Glucose (b) Starch: 1–4 linkage of  glucose monomers(b) Cellulose: 1–4 linkage of  glucose monomers

Polymers with  glucose are helical Polymers with  glucose are straight In straight structures, H atoms on one strand can bond with OH groups on other strands Parallel cellulose molecules held together this way are grouped into microfibrils, which form strong building materials for plants Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 5-8 b Glucose monomer Cellulose molecules Microfibril Cellulose microfibrils in a plant cell wall 0.5 µm 10 µm Cell walls

Enzymes that digest starch by hydrolyzing  linkages can’t hydrolyze  linkages in cellulose Cellulose in human food passes through the digestive tract as insoluble fiber Some microbes use enzymes to digest cellulose Many herbivores, from cows to termites, have symbiotic relationships with these microbes Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Chitin, another structural polysaccharide, is found in the exoskeleton of arthropods Chitin also provides structural support for the cell walls of many fungi Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig The structure of the chitin monomer. (a) (b) (c) Chitin forms the exoskeleton of arthropods. Chitin is used to make a strong and flexible surgical thread.

Carbohydrate questions… Is glucose (C 6 H 12 O 6 ) a monomer or a polymer? – monomer What is a glycosidic linkage? – Covalent bond formed between 2 monosaccharides by a dehydration reaction. There are two categories of polysaccharides – name them and give examples – Storage – starch and glycogen – Structure – cellulose and chitin Where is chitin found? – The exoskeleton of insects

Concept 5.3: Lipids are a diverse group of hydrophobic molecules Lipids are the one class of large biological molecules that do not form polymers The unifying feature of lipids is having little or no affinity for water Lipids are hydrophobic because  they consist mostly of hydrocarbons, which form nonpolar covalent bonds The most biologically important lipids are fats, phospholipids, and steroids Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fats Fats are constructed from two types of smaller molecules: glycerol and fatty acids Glycerol is a three-carbon alcohol with a hydroxyl group attached to each carbon A fatty acid consists of a carboxyl group attached to a long carbon skeleton Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig Fatty acid (palmitic acid) Glycerol (a) Dehydration reaction in the synthesis of a fat Ester linkage (b) Fat molecule (triacylglycerol)

Fats separate from water because water molecules form hydrogen bonds with each other and exclude the fats In a fat, three fatty acids are joined to glycerol by an ester linkage, creating a triacylglycerol, or triglyceride Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fatty acids vary in length (number of carbons) and in the number and locations of double bonds Saturated fatty acids have the maximum number of hydrogen atoms possible and no double bonds Unsaturated fatty acids have one or more double bonds Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig Structural formula of a saturated fat molecule Stearic acid, a saturated fatty acid (a) Saturated fat Structural formula of an unsaturated fat molecule Oleic acid, an unsaturated fatty acid (b) Unsaturated fat cis double bond causes bending

Fats made from saturated fatty acids are called saturated fats, and are solid at room temperature Most animal fats are saturated Fats made from unsaturated fatty acids are called unsaturated fats or oils, and are liquid at room temperature Plant fats and fish fats are usually unsaturated Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

A diet rich in saturated fats may contribute to cardiovascular disease through plaque deposits Hydrogenation is the process of converting unsaturated fats to saturated fats by adding hydrogen Hydrogenating vegetable oils also creates unsaturated fats with trans double bonds These trans fats may contribute more than saturated fats to cardiovascular disease Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

The major function of fats is energy storage Humans and other mammals store their fat in adipose cells Adipose tissue also cushions vital organs and insulates the body Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Phospholipids In a phospholipid, two fatty acids and a phosphate group are attached to glycerol The two fatty acid tails are hydrophobic, but the phosphate group and its attachments form a hydrophilic head Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig (b) Space-filling model (a)(c) Structural formula Phospholipid symbol Fatty acids Hydrophilic head Hydrophobic tails Choline Phosphate Glycerol Hydrophobic tails Hydrophilic head

When phospholipids are added to water, they self-assemble into a bilayer, with the hydrophobic tails pointing toward the interior The structure of phospholipids results in a bilayer arrangement found in cell membranes Phospholipids are the major component of all cell membranes Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig Hydrophilic head Hydrophobic tail WATER

Steroids Steroids are lipids characterized by a carbon skeleton consisting of four fused rings Cholesterol, an important steroid, is a component in animal cell membranes Although cholesterol is essential in animals, high levels in the blood may contribute to cardiovascular disease Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 5-15

Lipid questions… What characteristic do all lipids share? – Nonpolar/hydrophobic If a fat is composed of 3 fatty acids and 1 glycerol, how many water molecules will be removed to form it? What is this process? – 3, dehydration synthesis What is the difference between saturated fatty acids and unsaturated fatty acids? – Saturated = all single carbon to carbon bonds – Unsaturated = 1 or more double carbon to carbon bonds What are the 4 important functions of lipids? – Energy storage, structure, chemical messengers, protection