LBNL Michal Szelezniak, Eric Anderssen, Leo Greiner, Thorsten Stezelberger, Joe Silber, Xiangming Sun, Chinh Vu, Howard Wieman UTA Jerry Hoffman, Jo Schambach.

Slides:



Advertisements
Similar presentations
L. Greiner 1IPHC meeting – September 5-6, 2011 STAR HFT LBNL Leo Greiner, Eric Anderssen, Thorsten Stezelberger, Joe Silber, Xiangming Sun, Michal Szelezniak,
Advertisements

Hybrid pixel: pilot and bus K. Tanida (RIKEN) 06/09/03 Si upgrade workshop Outline Overview on ALICE pilot and bus Requirements Pilot options Bus options.
LBNL PIXEL IPHC 2009_06_LG1 Flex Cable Development The development of the flex cable for sensor readout and control is envisioned as a 4 stage process.
MS IPHC-LBL phone meeting, May 29, Ladder Testing at IPHC (Preliminary Results)
STAR Pixel Detector Phase-1 testing. 22 Testing interrupted LBNL-IPHC 06/ LG Lena Weronika Szelezniak born on May 30, 2009 at 10:04 am weighing.
HFT Technical Overview September 26, HFT 2013 TPC FGT 2011 STAR Detectors Fast and Full azimuthal particle identification EMC+EEMC+FMS (-1 ≤ 
ATLAS SCT Endcap Detector Modules Lutz Feld University of Freiburg for the ATLAS SCT Collaboration Vertex m.
L. Greiner 1HFT PXL LBNL F2F – March 14, 2012 STAR HFT The STAR-PXL sensor and electronics Progress report for F2F.
M. Szelezniak1PXL Sensor and RDO review – 06/23/2010 STAR PXL Sensors Overview.
L. Greiner1SLAC Test Beam 03/17/2011 STAR LBNL Leo Greiner, Eric Anderssen, Howard Matis, Thorsten Stezelberger, Joe Silber, Xiangming Sun, Michal Szelezniak,
The LHCb Inner Tracker LHCb: is a single-arm forward spectrometer dedicated to B-physics acceptance: (250)mrad: The Outer Tracker: covers the large.
PXL Electronics Status update for HFT TC meeting on May 11, 2010 at LBNL 1HFT TC 05/11/ LG.
Research and Development for the HFT at STAR Leo Greiner BNL DAC 03/15/2006.
L. Greiner 1PXL BNL Safety Review– September 26, 2011 STAR HFT LBNL Leo Greiner, Eric Anderssen, Thorsten Stezelberger, Joe Silber, Xiangming Sun, Michal.
HFT PXL Mechanical July 2010 Howard Wieman LBNL 1.
L. Greiner1PXL Sensor and RDO review – 06/23/2010 STAR Heavy Flavor Tracker Overview With parameters pertinent to the PXL Sensor and RDO design.
1 CARRIER BUS LAYOUT(a) ± 193 mm ladder1ladder mm mm Pixel chip Michel Morel EP/ED 09/ x 425µ 256 x 50µ Decoupling capacitors
MS, LG, XS PXL ladder tests at IPHC, May 1-7, Preliminary Ladder Testing Results At IPHC MS, XS, LG.
Performance of the DZero Layer 0 Detector Marvin Johnson For the DZero Silicon Group.
HFT & PXL geometry F.Videbæk Brookhaven National Laboratory 13/9/12.
L. Greiner 1HFT PXL BNL FTF– September 27, 2011 STAR HFT LBNL Leo Greiner, Eric Anderssen, Thorsten Stezelberger, Joe Silber, Xiangming Sun, Michal Szelezniak,
1 CARRIER BUS LAYOUT(a) ± 193 mm ladder1ladder mm mm Pixel chip Michel Morel EP/ED 09/ x 425µ 256 x 50µ Decoupling capacitors
L. Greiner1PXL Sensor and RDO review – 06/23/2010 STAR PXL System Hardware Architecture.
STAR-PXL Mechanical Integration and Cooling St. Odile Ultra-Thin Vertex Detector Workshop 8-Sept-2011 Howard Wieman.
17/06/2010UK Valencia RAL Petals and Staves Meeting 1 DC-DC for Stave Bus Tapes Roy Wastie Oxford University.
Leo Greiner IPHC testing Sensor and infrastructure testing at LBL. Capabilities and Plan.
M. Szelezniak1PXL Sensor and RDO review – 06/23/2010 STAR Hardware Prototyping Status.
H. Wieman1STAR HFT CD1 Review, BNL, November 2009 STAR HFT PIXEL Detector WBS 1.2 Howard Wieman LBNL.
The ALICE Silicon Pixel Detector Gianfranco Segato Dipartimento di Fisica Università di Padova and INFN for the ALICE Collaboration A barrel of two layers.
L. Greiner 1IPHC meeting – September 5-6, 2011 STAR HFT LBNL Leo Greiner, Eric Anderssen, Thorsten Stezelberger, Joe Silber, Xiangming Sun, Michal Szelezniak,
L. Greiner 1PXL Detector Progress – July 2013 STAR HFT LBNL Leo Greiner, Eric Anderssen, Giacomo Contin, Thorsten Stezelberger, Joe Silber, Xiangming Sun,
HFT PIXEL Detector Pre-practice CDR-1 Review 3-Sept Wieman 1.
Leo Greiner IPHC meeting HFT PIXEL DAQ Prototype Testing.
L. Greiner 1IPHC meeting – May 7, 2012 STAR HFT Plans for the next year A short report on HFT/PXL plans for post May 2012 TPC – Time Projection Chamber.
1 PIXEL H. Wieman HFT CDO LBNL Feb topics  Pixel specifications and parameters  Pixel silicon  Pixel Readout uSTAR telescope tests 
Phase-1 Design. i PHC Phase /04/2008 System Overview Clock, JTAG, sync marker and power supply connections Digital output.
Leo Greiner TC_Int1 Sensor and Readout Status of the PIXEL Detector.
MAPS based vertex detector at STAR Michal Szelezniak 1 on behalf of: E. Anderssen 1, X. Dong 1, L. Greiner 1, J. Kapitan 2,S. Margetis 3, H. Matis 1, H.G.
CAARI 2008 August 10-15, 2008, Fort Worth, Texas, USA STAR Vertex Detector Upgrade – HFT PIXEL Development Outline: Heavy Flavor Tracker at STAR PIXEL.
Leo Greiner IPHC DAQ Readout for the PIXEL detector for the Heavy Flavor Tracker upgrade at STAR.
HFT PIXEL Detector Director’s review May-2009 Wieman 1.
11 SSD Power and Cooling on the Cone STAR Integration Workshop Howard Matis May 16, 2008 STAR Integration Workshop Howard Matis May 16, 2008.
PXL Cable Options LG 1HFT Hardware Meeting 02/11/2010.
Michal Szelezniak – LBL-IPHC meeting – May 2007 Prototype HFT readout system Telescope prototype based on three Mimostar2 chips.
Leo Greiner PIXEL Hardware meeting HFT PIXEL detector LVDS Data Path Testing.
Xiangming Sun1PXL Sensor and RDO review – 06/23/2010 STAR XIANGMING SUN LAWRENCE BERKELEY NATIONAL LAB Firmware and Software Architecture for PIXEL L.
1 STAR HFT Pixel Detector Howard Wieman Lawrence Berkeley National Lab.
1 The STAR Pixel Upgrade H. Wieman Heavy Quark Workshop LBNL 1-Nov-2007.
L. Greiner 1IPHC meeting – May 7, 2012 STAR HFT Plans for the next year A short report on HFT/PXL plans for post May 2012 TPC – Time Projection Chamber.
L. Greiner 1FEE 2014 – STAR PXL Vertex Detector STAR HFT LBNL Leo Greiner, Eric Anderssen, Giacomo Contin, Thorsten Stezelberger, Joe Silber, Xiangming.
L. Greiner 1St. Odile CMOS Workshop – September 6-9, 2011 STAR HFT LBNL Leo Greiner, Eric Anderssen, Thorsten Stezelberger, Joe Silber, Xiangming Sun,
Sensor testing and validation plans for Phase-1 and Ultimate IPHC_HFT 06/15/ LG1.
L. Greiner 1ATLAS Workshop LBL - September, 2013 STAR HFT LBNL Leo Greiner, Eric Anderssen, Giacomo Contin, Thorsten Stezelberger, Joe Silber, Xiangming.
Vertex 2008 July 28–August 1, 2008, Utö Island, Sweden CMOS pixel vertex detector at STAR Michal Szelezniak on behalf of: LBNL: E. Anderssen, L. Greiner,
MS, LG, XS PXL ladder tests at IPHC, May 1-7, Preliminary Ladder Testing Results (part 2) At IPHC MS, XS, LG.
On a eRHIC silicon detector: studies/ideas BNL EIC Task Force Meeting May 16 th 2013 Benedetto Di Ruzza.
Leo Greiner IPHC beam test Beam tests at the ALS and RHIC with a Mimostar-2 telescope.
ULTIMATE: a High Resolution CMOS Pixel Sensor for the STAR Vertex Detector Upgrade Christine Hu-Guo on behalf of the IPHC (Strasbourg) CMOS Sensors group.
Leo Greiner IPHC1 STAR Vertex Detector Environment with Implications for Design and Testing.
STAR Pixel Detector readout prototyping status. LBNL-IPHC-06/ LG22 Talk Outline Quick review of requirements and system design Status at last meeting.
1 FANGS for BEAST J. Dingfelder, A. Eyring, Laura Mari, C. Marinas, D. Pohl University of Bonn
LBNL Eric Anderssen, Leo Greiner, Thorsten Stezelberger, Joe Silber, Xiangming Sun, Michal Szelezniak, Chinh Vu, Howard Wieman UTA Jerry Hoffman, Jo Schambach.
L. Greiner 1Project X Physics Study, Fermilab, June 18, 2011 STAR HFT LBNL Leo Greiner, Eric Anderssen, Thorsten Stezelberger, Joe Silber, Xiangming Sun,
1 PIXEL H. Wieman HFT CDO LBNL Feb topics  Pixel specifications and parameters  Pixel silicon  Pixel Readout uSTAR telescope tests 
Multiple Scattering and Sensor Thickness Preserving track extrapolation accuracy to bulk of particles at low momentum requires ultra-thin sensors and mechanical.
Laboratorio di Strumentazione Elettronica Annual Report of Activities – a.a. 2009/2010 – October 15, 2010Phone Meeting – October 29, 2010 Characterization.
The STAR PXL detector cooling system LBNL: Eric Anderssen, Giacomo Contin, Leo Greiner, Joe Silber, Thorsten Stezelberger, Xiangming Sun, Michal Szelezniak,
Noise & Grounding Andrei Nomerotski (U.Oxford) 17 July 2007.
The STAR Heavy Flavor Tracker PXL detector readout electronics
Leo Greiner, Eric Anderssen, Howard Matis,
Presentation transcript:

LBNL Michal Szelezniak, Eric Anderssen, Leo Greiner, Thorsten Stezelberger, Joe Silber, Xiangming Sun, Chinh Vu, Howard Wieman UTA Jerry Hoffman, Jo Schambach IPHC Marc Winter CMOS group STAR PXL Detector Sensor Cable Development September 6-9, 2011, Mont Sainte Odile, France Workshop on system integration of highly granular and thin vertex detectors

September 6-9, 2011, Mont Sainte Odile 2 2 Michal Szelezniak Introduction PXL ladder characteristics Cable development plan Infrastructure testing board Testing parameters Testing results Summary Outline

Workshop on system integration of highly granular and thin vertex detectors September 6-9, 2011, Mont Sainte Odile 3 3 Michal Szelezniak Mechanical support with kinematic mounts (insertion side) Insertion from one side 2 layers 5 sectors / half (10 sectors total) 4 ladders/sector Aluminum conductor Ladder Flex Cable Ladder with 10 MAPS sensors (~ 2×2 cm each) carbon fiber sector tubes (~ 200µm thick) 20 cm PXL detector mechanical design

Workshop on system integration of highly granular and thin vertex detectors September 6-9, 2011, Mont Sainte Odile 4 4 Michal Szelezniak PXL electrical connection diagram 10 parallel systems, each composed of: 4 ladders (1 sector) Mass Termination Board Readout board

Workshop on system integration of highly granular and thin vertex detectors September 6-9, 2011, Mont Sainte Odile 5 5 Michal Szelezniak cable bundle drivers pixel chips adhesive wire bonds capacitors adhesive composite backer kapton flex cable Signal# of tracestypeWidth (0.005” t&s) Sensor output (PH-2) Sensor output (Ultimate) 10 x 4 x 2 = x 2 x 2 = 40 LVDS 0.800” (20.32 mm) 0.400” (10.16 mm) CLK2LVDS0.020” (0.51 mm) CLK_RETURN*2LVDS0.020” (0.51 mm) Marker*2LVDS0.020” (0.51 mm) START (PH-2) START (Ultimate) 1212 CMOS LVDS 0.010” (0.25 mm) 0.020” (0.51 mm) SPEAK*1CMOS0.010” (0.25 mm) JTAG + RSTB*5CMOS0.050” (1.27 mm) TEMP2analog0.020” (0.51 mm) Total (Phase-2) Total (Ultimate production) ” (24.14 mm) 0.520” (13.22 mm) PXL ladder and cable Ladder composition: Signal count on the cable for 2 generations of PXL sensors: Phase-1 – challenging Ultimate – a bit easier *- signals required for prototyping and testing but not on final production boards.

Workshop on system integration of highly granular and thin vertex detectors September 6-9, 2011, Mont Sainte Odile 6 6 Michal Szelezniak 2 layer Al conductor cable with vias in low mass region 0.004” (100 µm) traces and 0.004” (100 µm) spaces 70% fill factor Conductor thickness in low mass region is 21 µm (Cu) or 32 µm (Al) Kapton thickness is 25 µm. Bond wire connection between Al and Cu cable sections. Cable size is approximately 2.3 cm x 28 cm. Low mass region calculated X 0 for Al conductor = % Low mass region calculated X 0 for Cu conductor = % Preliminary Design: Hybrid Copper / Aluminum conductor flex cable Current goal of cable development

Workshop on system integration of highly granular and thin vertex detectors September 6-9, 2011, Mont Sainte Odile 7 7 Michal Szelezniak 1.Infrastructure testing board (ITB)  Evaluate general design of running 10 sensors on a ladder  Find and test the working envelope of bypass capacitance and power supply and ground connections 2.Prototype detector cable – FR-4 with Cu traces  Correct size and the same layout geometry as the final cable  attempt to have the thickness of the Cu layer mimic the final cable to give the correct power and ground impedances  testing of this cable via digital output only 3.Prototype detector cable – Kapton with Cu traces  direct translation of the previous stage cable into a Kapton flex cable 4.Prototype detector cable – Kapton with Al traces PXL cable development plan

Workshop on system integration of highly granular and thin vertex detectors September 6-9, 2011, Mont Sainte Odile 8 8 Michal Szelezniak Infrastructure Testing Board (ITB) Analog readout - one sensor at a time Jumper selectable power source to each individual sensor In series replaceable resistor for each sensor power supply (analog and digital) Removable board level capacitor bypassing Removable individual sensor capacitor bypassing Readout over 2 m fine wire as per final ladders Readout through the full HFT data path including MTB, 160 MHz LVDS CLK All buffering and drivers use the same chips as the final ladder First prototype with full-thickness Phase-1, the second prototype with 50 µm Phase-2 Phase-1 (Phase-2) sensor Phase-1 prototype Reticle size (~ 4 cm²) Pixel pitch 30 μm ~ 410 k pixels Column parallel readout Column discriminators Binary readout of all pixels Data multiplexed onto 4 LVDS 160 MHz Integration time 640 μs Phase-2 prototype Small mask adjustments to improve discriminator threshold dispersion ITB with 10 sensors (Phase-1, 2)

Workshop on system integration of highly granular and thin vertex detectors September 6-9, 2011, Mont Sainte Odile 9 9 Michal Szelezniak ITB layout Configuration Jumpers Analog readout buffers (9× Phase-1, 1× Phase-2) Ladder-like layout except for Power and GND

Workshop on system integration of highly granular and thin vertex detectors September 6-9, 2011, Mont Sainte Odile 10 Michal Szelezniak Test parameters Sensor characterization – fit threshold scan data to the error function Faulty column Noise FPN σ distributionµ distribution

Workshop on system integration of highly granular and thin vertex detectors September 6-9, 2011, Mont Sainte Odile 11 Michal Szelezniak Testing conditions Data labels used Testing condition refeach sensor measured individually, other sensors OFF 3.3 VDefault voltage 3.0 VReduced voltage 5_OhmAdditional resistance between the ITB power supply and each of the sensors C34_35Half of VDA and VDD small bypassing capacitors C32-25no VDA, VDD small capacitors 0.5xCReduced number of VCLP capacitors 0xCno VCLP capacitors near sensors BUSBus type power distribution; 2 buses: VDA, VDD 1PWRTwo buses connected together, single power supply (low activity)*Low switching activity: all sensors’ thresholds set high, at 250 DAC (high activity)High switching activity: each sensor was configured for zero threshold NOTE: progressive capacitor removal (top-to-bottom) * A Phase-1-based PXL prototype would operate at <300 hits per sensor (inner layer)

Workshop on system integration of highly granular and thin vertex detectors September 6-9, 2011, Mont Sainte Odile 12 Michal Szelezniak Testing results – temperature average ITB temperature profile observed consistently throughout the test (results from the characteristics of the cooling system) Sensor performance is independent of temperature in this range

Workshop on system integration of highly granular and thin vertex detectors September 6-9, 2011, Mont Sainte Odile 13 Michal Szelezniak Testing results – noise in the digital readout Average noise and FPN extracted from threshold scan measurements FPN data marked with * excludes the first two sensors in the chain Error bars - standard deviation (σ) of the noise distribution.

Workshop on system integration of highly granular and thin vertex detectors September 6-9, 2011, Mont Sainte Odile 14 Michal Szelezniak Noise performance Low switching activity

Workshop on system integration of highly granular and thin vertex detectors September 6-9, 2011, Mont Sainte Odile 15 Michal Szelezniak Fixed pattern noise Low switching activity

Workshop on system integration of highly granular and thin vertex detectors September 6-9, 2011, Mont Sainte Odile 16 Michal Szelezniak Analog output test results

Workshop on system integration of highly granular and thin vertex detectors September 6-9, 2011, Mont Sainte Odile 17 Michal Szelezniak Summary Phase-1 sensor performance appears independent of the number of high- frequency decoupling capacitors on the board (confirmed by analog and digital readout) Unaffected performance after removing all small capacitors associated with VDD, VDA and VCLP voltages. Test results obtained from threshold scans suggest that the bus-type power distribution provides, on average, a slightly better noise performance but with an increased FPN. Both effects are within % and with the damaged sensor readout and limited testing capabilities can not be considered accurate. ITB equipped with 50 µm Phase-2 sensors is under test Stage 2 – FR4 prototype cable is in the design phase for the PXL production sensor (Ultimate)

Workshop on system integration of highly granular and thin vertex detectors September 6-9, 2011, Mont Sainte Odile 18 Michal Szelezniak Backup slides

Workshop on system integration of highly granular and thin vertex detectors September 6-9, 2011, Mont Sainte Odile 19 Michal Szelezniak PXL grounding plan