2013 IEEE Compound Semiconductor IC Symposium, October 13-15, Monterey, C 30% PAE W-band InP Power Amplifiers using Sub-quarter-wavelength Baluns for Series-connected.

Slides:



Advertisements
Similar presentations
High efficiency Power amplifier design for mm-Wave
Advertisements

Development of THz Transistors & ( GHz) Sub-mm-Wave ICs , fax The 11th International Symposium on.
CSICS 2013 Monterey, California A DC-100 GHz Bandwidth and 20.5 dB Gain Limiting Amplifier in 0.25μm InP DHBT Technology Saeid Daneshgar, Prof. Mark Rodwell.
The High Voltage/High Power FET (HiVP)
1 A 1.1V 150GHz Amplifier with 8dB Gain and +6dBm Saturated Output Power in Standard Digital 65nm CMOS Using Dummy-Prefilled Microstrip Lines M. Seo 1,
Common-Base vs. Common-Emitter
1 InGaAs/InP DHBTs demonstrating simultaneous f t / f max ~ 460/850 GHz in a refractory emitter process Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
Y. Wei, M. Urteaga, Z. Griffith, D. Scott, S. Xie, V. Paidi, N. Parthasarathy, M. Rodwell. Department of Electrical and Computer Engineering, University.
Device Research Conference 2011
ELEC Lecture 191 ELEC 412 RF & Microwave Engineering Fall 2004 Lecture 19.
Characteristics of Submicron HBTs in the GHz Band M. Urteaga, S. Krishnan, D. Scott, T. Mathew, Y. Wei, M. Dahlstrom, S. Lee, M. Rodwell. Department.
Chapter 2 Small-Signal Amplifiers
Slide 19/3/2002 S. Xie, V. Paidi, R. Coffie, S. Keller, S. Heikman, A. Chini, U. Mishra, S. Long, M. Rodwell Department of Electrical and Computer Engineering,
40 GHz MMIC Power Amplifier in InP DHBT Technology Y.Wei, S.Krishnan, M.Urteaga, Z.Griffith, D.Scott, V.Paidi, N.Parthasarathy, M.Rodwell Department of.
Electronics Principles & Applications Sixth Edition Chapter 7 More About Small-Signal Amplifiers (student version) ©2003 Glencoe/McGraw-Hill Charles A.
Design of Microwave Power Amplifier with ADS Technische Universität Berlin Fachgebiet Mikrowellentechnik Daniel Gruner, Ahmed Sayed, Ahmed Al Tanany,
LECTURE 4. HIGH-EFFICIENCY POWER AMPLIFIER DESIGN
Chart 1 A 3-Stage Shunt-Feedback Op-Amp having 19.2dB Gain, 54.1dBm OIP3 (2GHz), and 252 OIP3/P DC Ratio Zach Griffith, M. Urteaga, R. Pierson, P. Rowell,
48.8mW Multi-cell InP HBT Amplifier with on-wafer power combining at 220GHz Thomas Reed, Mark Rodwell University of California, Santa Barbara Zach Griffith,
Microwave Amplifier Design Blog by Ben (Uram) Han and Nemuel Magno Group 14 ENEL 434 – Electronics 2 Assignment
Sub-mm-Wave Technologies: Systems, ICs, THz Transistors Asia-Pacific Microwave Conference, November 8th, Seoul Mark.
McGraw-Hill © 2008 The McGraw-Hill Companies Inc. All rights reserved. Electronics Principles & Applications Seventh Edition Chapter 7 More About Small-Signal.
Microwave Amplifier Design Blog by Ben (Uram) Han and Nemuel Magno Group 14 ENEL 434 – Electronics 2 Assignment
1 姓名 : 李國彰 指導教授 : 林志明老師 A 1v 2.4GHz CMOS POWER AMPLIFIER WITH INTEGRATED DIODE LINEARIZER ( The 2004 IEEE Asia-Pacific Conference on Circuits and Systems,
Design of LNA at 2.4 GHz Using 0.25 µm Technology
Microwave Engineering, 3rd Edition by David M. Pozar
Seoul National University CMOS for Power Device CMOS for Power Device 전파공학 연구실 노 영 우 Microwave Device Term Project.
Study of 60GHz Wireless Network & Circuit Ahn Yong-joon.
Single-stage G-band HBT Amplifier with 6.3 dB Gain at 175 GHz M. Urteaga, D. Scott, T. Mathew, S. Krishnan, Y. Wei, M. Rodwell. Department of Electrical.
87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy.
GHZ Wireless: Transistors, ICs, and System Design Plenary, 2014 German Microwave Conference, March, Aachen.
Design of 3.67 GHz RF Power Amplifier Presenters: Akshay Iyer, Logan Woodcock Advisers: Dr. K. Koh, Yahya Mortazavi.
Microwave Traveling Wave Amplifiers and Distributed Oscillators ICs in Industry Standard Silicon CMOS Kalyan Bhattacharyya Supervisors: Drs. J. Mukherjee.
100+ GHz Transistor Electronics: Present and Projected Capabilities , fax 2010 IEEE International Topical.
1 Integrated Circuits for Wavelength Division De-multiplexing in the Electrical Domain 1 H.C. Park, 1 M. Piels, 2 E. Bloch, 1 M. Lu, 1 A. Sivanathan, 3.
Student Paper Finalist TU3B-1
High-Speed Track-and-Hold Circuit Design October 17th, 2012 Saeid Daneshgar, Prof. Mark Rodwell (UCSB) Zach Griffith (Teledyne)
Rodwell et al, UCSB: Keynote talk, 2000 IEEE Bipolar/BICMOS Circuits and Technology Meeting, Minneapolis, September Submicron Scaling of III-V HBTs for.
W-band InP/InGaAs/InP DHBT MMIC Power Amplifiers Yun Wei, Sangmin Lee, Sundararajan Krishnan, Mattias Dahlström, Miguel Urteaga, Mark Rodwell Department.
V. Paidi, Z. Griffith, Y. Wei, M. Dahlstrom,
A High-Gain, Low-Noise, +6dBm PA in 90nm CMOS for 60-GHz Radio
Chart 1 A 204.8GHz Static Divide-by-8 Frequency Divider in 250nm InP HBT Zach Griffith, Miguel Urteaga, Richard Pierson, Petra Rowell, Mark Rodwell*, and.
CommunicationElectronics Principles & Applications Third Edition Chapter 6 Radio Transmitters ©2001 Glencoe/McGraw-Hill Louis E. Frenzel.
III-V HBT device physics: what to include in future compact models , fax Mark Rodwell University of California,
Multi-stage G-band ( GHz) InP HBT Amplifiers
ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 16. Active Loads Jose E. Schutt-Aine Electrical & Computer Engineering University of.
Jinna Yan Nanyang Technological University Singapore
Device Research Conference, 2005 Zach Griffith and Mark Rodwell Department of Electrical and Computer Engineering University of California, Santa Barbara,
Trey Morris Dwalyn Morgan. Requirements 3 stage design gain load impedance input impedance max peak input voltage Maintain harmonic distortions below.
Urteaga et al, 2001 Device Research Conference, June, Notre Dame, Illinois Characteristics of Submicron HBTs in the GHz Band M. Urteaga, S. Krishnan,
7-1 McGraw-Hill © 2013 The McGraw-Hill Companies, Inc. All rights reserved. Electronics Principles & Applications Eighth Edition Chapter 7 More About Small-Signal.
© Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 2.5V, 77-GHz, Automotive Radar Chipset Sean T. Nicolson 1, Keith A. Tang 1, Kenneth H.K. Yau 1, Pascal.
© 2013 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill 7-1 Electronics Principles & Applications Eighth Edition Chapter 7 More About Small-Signal.
50-500GHz Wireless Technologies: Transistors, ICs, and Systems
Indium Phosphide and Related Material Conference 2006 Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
Electronics Principles & Applications Fifth Edition Chapter 7 More About Small-Signal Amplifiers ©1999 Glencoe/McGraw-Hill Charles A. Schuler.
THz Bipolar Transistor Circuits: Technical Feasibility, Technology Development, Integrated Circuit Results ,
185 GHz Monolithic Amplifier in InGaAs/InAlAs Transferred-Substrate HBT Technology M. Urteaga, D. Scott, T. Mathew, S. Krishnan, Y. Wei, M. Rodwell. Department.
Indium Phosphide and Related Materials
December 1997 Circuit Analysis Examples 걼 Hairpin Edge Coupled Filter 걼 Bipolar Amplifier 걼 Statistical Analysis and Design Centering 걼 Frequency Doubler.
Solid State Amplifier Circuit Design Student: Branko Popovic Advisor: Geoff Waldschmidt.
VI. HIGH-EFFICIENCY SWITCHMODE HYBRID AND MMIC POWER AMPLIFIERS:
Prospects for Multi-THz III-V Transistors
Ultra-low Power Components
Communication 40 GHz Anurag Nigam.
A High-Dynamic-Range W-band
MARX GENERATOR BASED HIGH VOLTAGE USING MOSFETs
Ultra Wideband Power Amplifiers in 130 nm InP HBT Technology
High-linearity W-band Amplifiers in 130 nm InP HBT Technology
Analog Electronic Circuits 1
Presentation transcript:

2013 IEEE Compound Semiconductor IC Symposium, October 13-15, Monterey, C 30% PAE W-band InP Power Amplifiers using Sub-quarter-wavelength Baluns for Series-connected Power-combining 1H.C. Park, 1S. Daneshgar, 1J. C. Rode, 2Z. Griffith, 2M. Urteaga, 3B.S. Kim, 1M. Rodwell 1University of California at Santa Barbara 2Teledyne Scientific and Imaging Company 3Sungkyunkwan University 16th October, 2013 hcpark@ece.ucsb.edu 1 1

mm-Wave Power Amplifier: Challenges mm-Wave PAs: applications: High resolution imaging, high speed communication needed: High power / High efficiency / Small die area ( low cost) Extensive power combining Compact power-combining Class E/D/F are poor @ mm-wave insufficient fmax , high losses in harmonic terminations efficiency must instead come from combiner Efficient power-combining Goal: efficient, compact mm-wave power-combiners 2

Parallel Power-Combining Output power: POUT = N x V x I Parallel connection increases POUT Load Impedance: ZOPT = V / (N x I) Parallel connection decreases Zopt High POUT→ Low Zopt Needs impedance transformation: lumped lines, Wilkinson, ... High insertion loss Small bandwidth Large die area 3

Series Power-Combining & Stacks Parallel connections: Iout=N x I Series connections: Vout=N x V Output power: Pout=N2 x V x I Load impedance: Zopt=V/I Small or zero power-combining losses Small die area How do we drive the gates ? Local voltage feedback: drives gates, sets voltage distribution Design challenge: need uniform RF voltage distribution need ~unity RF current gain per element ...needed for simultaneous compression of all FETs. 4

Standard λ/4 Baluns: Series Combining Balun combiner: voltages add 2:1 series connection each source sees 25 W → double Imax for each source 4:1 increased Pout Standard l/4 balun : l/4 stub→ open circuit long lines→ high losses long lines → large die 5

Sub-λ/4 Baluns for Series Combining What if balun length is <<l/4 ? Stub becomes inductive ! Sub-l/4 balun : stub→ inductive tunes transistor Cout ! short lines→ low losses short lines → small die 6

Sub-λ/4 Baluns for Series Combining 2:1 baluns: 2:1 series connection Each device loaded by 25W → HBTs are 2:1 larger than needed for 50W load. → 4:1 increased Pout. Sub l/4 balun: inductive stub balun inductive stub tunes HBT Cout. Similar network on input. 7

Sub-λ/4 Balun Series-Combiner: Design Each HBT loaded by 25W HBT junction area selected so that Imax=Vmax/25W Each HBT has some Cout . Stub length picked so that Zstub=-1/jwCout → tunes HBT 4:1 more power than without combiner. 8

Balun Configurations in PA ICs Step 1 GND (M1) TRs 2 (diff.) x 8 finger TR cells + GND (M1) 9

Balun Configurations in PA ICs Step 2 GND (M1) GND (M1) CAP M2 TRs TRs CAP 10

Balun Configurations in PA ICs Step 3 GND (M1) CAP M2 CAP TRs M3 M2–M3 Microstrip transmission lines But, E-fields between M3-M1 are not negligible !! 11

Balun Configurations in PA ICs Step 4 sidewall M3 M2 TRs CAP GND (M1) CAP Walls M2-M3 CAP TRs M3 M3–M1 E-field shield using sidewalls  Well-balanced balun with short length (λ/16) 12

2:1 Balun Test Results CP = 103fF Back-to-back measured S-parameters v1 CP = 103fF FC = 81GHz I.L. = -1.1dB S21 = -1.76dB Back-to-back measured S-parameters v2 CP = 78fF FC = 94GHz I.L. = -1.2dB S21 = -1.79dB v3 CP = 65fF FC = 103GHz I.L. = -1.2dB S21 = -1.56dB *Does not de-embed losses of PADs , capacitors, and interconnection lines 0.6~0.8 dB single-pass insertion loss (used for 4:1 power combining) 13

InP HBT (Teledyne 250nm HBT) cell: 0.25μm x 6μm x 4-fingers BVCEO = 4.5V , IC,max = 72mA Pout = 15.5dBm Ropt = 56Ω MAG/MSG including EM-Momentum results Emitters to GND Base Collector 350GHz fτ, 590GHz fmax@ JE=6mA/μm2 Courtesy: Teledyne Science Company ~13dB MAG @ 85 GHz 14

PA Designs Using 2:1 Balun Identical input / output baluns 2-stage input matching networks Active bias – thermal / class-AB 15

Single-Stage PA IC Test Results (86GHz) 10dB Gain, >100mW PSAT, >30% PAE, 23GHz 3dB-bandwidth Power per unit IC die area* =294 mW/mm2 (if pad area included) =723 mW/mm2 (if pad area not included) 16

Two-Stage PA IC Test Results (86GHz) 17.5dB Gain, >200mW PSAT, >30% PAE Power per unit IC die area* =307 mW/mm2 (if pad area included) =497 mW/mm2 (if pad area not included) 17

800 mW 1.3mm2 Design Using 4:1 Baluns Baluns for 4:1 series-connected power-combining 4:1 Two-Stage Schematic 4:1 Two-Stage Layout (1.2x1.1mm2) Small-signal data looks good. Need driver amp for Psat testing. 18

Sub-λ/4 Baluns for Series Combining Series combining using sub-l/4 baluns Low-loss (~0.6 dB @85GHz) → high efficiency Compact→ small die area 2:1 baluns→ effective 2:1 series connection 4:1 increase in output power. W-band power amplifiers using 2:1 baluns Record >30% PAE @ 100mW, 200mW Record 23 GHz 3-dB bandwidth Record 723mW/mm2 power density Completed new designs in test Higher-efficiency ~200 mW, 85 GHz designs 4:1 balun design: goal 800 mW, 85 GHz, 1.3 mm2 220 GHz 4:1 balun design has been taped out 450 x 820 um2 825 x 820 um2 19

Thanks for your attention! Questions? hcpark@ece.ucsb.edu