1 Knapsack Cryptosystems 2 ◎ Merkle-Hellman Knapsack Cryptosystem 觀察: (1) 0/1 knapsack problem (i.e. sum of subset) 例:已知 C = 14, A = (1, 10, 5, 22, 3)

Slides:



Advertisements
Similar presentations
: Arrange the Numbers ★★★☆☆ 題組: Contest Archive with Online Judge 題號: 11481: Arrange the Numbers 解題者:李重儀 解題日期: 2008 年 9 月 13 日 題意: 將數列 {1,2,3, …,N}
Advertisements

布林代數的應用--- 全及項(最小項)和全或項(最大項)展開式
: A-Sequence 星級 : ★★☆☆☆ 題組: Online-judge.uva.es PROBLEM SET Volume CIX 題號: Problem D : A-Sequence 解題者:薛祖淵 解題日期: 2006 年 2 月 21 日 題意:一開始先輸入一個.
:Word Morphing ★★☆☆☆ 題組: Problem Set Archive with Online Judge 題號: 10508:word morphing 解題者:楊家豪 解題日期: 2006 年 5 月 21 日 題意: 第一行給你兩個正整數, 第一個代表下面會出現幾個字串,
倫理準則:機密性. Confidentiality By: Angela Lo. 倫理準則:機密性. Confidentiality 醫護人員有更多的機會接觸病患的隱私。 隱私包括兩方面︰一是病患的身體,另一 是有關病患的機密的訊息。 醫護人員有更多的機會接觸病患的隱私。 隱私包括兩方面︰一是病患的身體,另一.
亂數產生器安全性評估 之統計測試 SEC HW7 姓名:翁玉芬 學號:
Efficient aggregation of encrypted data in Wireless Sensor Network.
:New Land ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 11871: New Land 解題者:施博修 解題日期: 2011 年 6 月 8 日 題意:國王有一個懶兒子,為了勞動兒子,他想了一個 辦法,令他在某天早上開始走路,直到太陽下山前,靠.
: OPENING DOORS ? 題組: Problem Set Archive with Online Judge 題號: 10606: OPENING DOORS 解題者:侯沛彣 解題日期: 2006 年 6 月 11 日 題意: - 某間學校有 N 個學生,每個學生都有自己的衣物櫃.
: ShellSort ★★☆☆☆ 題組: Problem D 題號: 10152: ShellSort 解題者:林一帆 解題日期: 2006 年 4 月 10 日 題意:烏龜王國的烏龜總是一隻一隻疊在一起。唯一改變烏龜位置 的方法為:一隻烏龜爬出他原來的位置,然後往上爬到最上方。給 你一堆烏龜原來排列的順序,以及我們想要的烏龜的排列順序,你.
Chapter 2 聯立線性方程式與矩陣 緒言 線性方程式組 (systems of linear equations) 出現 在多數線性模式 (linear model) 中。根據以往解 題的經驗,讀者們也許已發現方程式的解僅與 該方程式的係數有關,求解的過程也僅與係數 的運算有關,只要係數間的相關位置不改變,
STAT0_sampling Random Sampling  母體: Finite population & Infinity population  由一大小為 N 的有限母體中抽出一樣本數為 n 的樣 本,若每一樣本被抽出的機率是一樣的,這樣本稱 為隨機樣本 (random sample)
5.1 Rn上之長度與點積 5.2 內積空間 5.3 單範正交基底:Gram-Schmidt過程 5.4 數學模型與最小平方分析
第 4 章 迴歸的同步推論與其他主題.
1. 假設以下的敘述為一未提供 “ 捷徑計算 ” 能力的程式段,試用程 式設計的技巧,使此敘述經此改 寫的動作後,具有與 “ 捷徑計算 ” 之 處理方法相同之處理模式。 if and then E1 else E2 endif.
STAT0_corr1 二變數的相關性  變數之間的關係是統計研究上的一大目標  討論二分類變數的相關性,以列聯表來表示  討論二連續隨機變數時,可以作 x-y 散佈圖觀察它 們的關係強度  以相關係數來代表二者關係的強度.
第三章 變數與繫結 陳維魁 博士 儒林圖書公司. 2 大綱  變數的定義  變數元件  儲存區配置問題  參考的透明性  完全計算  捷徑計算  繫結 (binding)  繫結時間  精選習題.
基礎物理總論 基礎物理總論 熱力學與統計力學(三) Statistical Mechanics 東海大學物理系 施奇廷.
Department of Air-conditioning and Refrigeration Engineering/ National Taipei University of Technology 模糊控制設計使用 MATLAB 李達生.
Monte Carlo Simulation Part.2 Metropolis Algorithm Dept. Phys. Tunghai Univ. Numerical Methods C. T. Shih.
信度.
1 第四章 多變數函數的微分學 § 4.1 偏導數定義 定義 極限值 ■. 2 定理 極限值的基本定理 (1) 極限值的唯一性 : 若 存在,則 其值必為唯一。 (2) 若 且 ( 與 為常數 ) , 則 且 為常數且.
:Problem D: Bit-wise Sequence ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10232: Problem D: Bit-wise Sequence 解題者:李濟宇 解題日期: 2006 年 4 月 16.
: The largest Clique ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11324: The largest Clique 解題者:李重儀 解題日期: 2008 年 11 月 24 日 題意: 簡單來說,給你一個 directed.
: Happy Number ★ ? 題組: Problem Set Archive with Online Judge 題號: 10591: Happy Number 解題者:陳瀅文 解題日期: 2006 年 6 月 6 日 題意:判斷一個正整數 N 是否為 Happy Number.
3.1 矩陣的行列式 3.2 使用基本運算求行列式 3.3 行列式的性質 3.4 特徵值介紹 3.5 行列式的應用
短缺,盈餘與均衡. 遊戲規則  老師想出售一些學生喜歡的小食。  老師首先講出價錢,有興趣買的請舉手。
: Multisets and Sequences ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 11023: Multisets and Sequences 解題者:葉貫中 解題日期: 2007 年 4 月 24 日 題意:在這個題目中,我們要定義.
導線測量平差導論 觀測方程式 多餘方程式 實例 最小控制量 網形平差 χ2檢定:擬合度檢定
:Nuts for nuts..Nuts for nuts.. ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 10944:Nuts for nuts.. 解題者:楊家豪 解題日期: 2006 年 2 月 題意: 給定兩個正整數 x,y.
校外使用圖書館購置之資料庫 龍華大學圖書館. 讀者遠端認證 (RPA) 設定說明  透過圖書館架設完成的 RPA (Remote Patron Authentication) 讀者遠端認證代理主 機系統,讀者於校外或院外 可直接連線使 用本館所提供的資料庫。  若非使用本館電子資料,請勿設定此代理.
從此處輸入帳號密碼登入到管理頁面. 點選進到檔案管理 點選「上傳檔案」上傳資料 點選瀏覽選擇電腦裡的檔案 可選擇公開或不公開 為平台上的資料夾 此處為檔案分類,可顯示在展示頁面上,若要參加 MY EG 競賽,做品一律上傳到 “ 98 MY EG Contest ” 點選此處確定上傳檔案.
The application of boundary element evaluation on a silencer in the presence of a linear temperature gradient Boundary Element Method 期末報告 指導老師:陳正宗終身特聘教授.
1 第 4 章 複 因 子 的 應 用複 因 子 的 應 用. 2 移動等額系列 並非 所謂移動系列,是指現值所在的時 間點並非 t = 0. 向 “0” 的左方移動或向 t = “0” 的右 方移動.
1 Finite Continued Fractions 田錦燕 94/11/03 95/8/9( 最後更新 )
Lecture 7 Sorting in Linear Time. Sorting in Linear Time2 7.1 Lower bounds for sorting 本節探討排序所耗用的時間複雜度下限。 任何一個以比較為基礎排序的演算法,排序 n 個元 素時至少耗用 Ω(nlogn) 次比較。
觀測量的權 權的觀念與計算.
公用品.  該物品的數量不會因一人的消費而受到 影響,它可以同時地被多人享用。 角色分配  兩位同學當我的助手,負責:  其餘各人是投資者,每人擁有 $100 , 可以投資在兩種資產上。  記錄  計算  協助同學討論.
: A-Sequence ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10930: A-Sequence 解題者:陳盈村 解題日期: 2008 年 5 月 30 日 題意: A-Sequence 需符合以下的條件, 1 ≤ a.
: Beautiful Numbers ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 11472: Beautiful Numbers 解題者:邱經達 解題日期: 2011 年 5 月 5 日 題意: 若一個 N 進位的數用到該.
: THE SAMS' CONTEST ☆☆★★★ 題組: Problem Set Archive with Online Judge 題號: 10520: THE SAMS' CONTEST 解題者:陳相廷,林祺光 解題日期: 2006 年 5 月 22 日 題意:依以下式子,給定 n.
Section 4.2 Probability Models 機率模式. 由實驗看機率 實驗前先列出所有可能的實驗結果。 – 擲銅板:正面或反面。 – 擲骰子: 1~6 點。 – 擲骰子兩顆: (1,1),(1,2),(1,3),… 等 36 種。 決定每一個可能的實驗結果發生機率。 – 實驗後所有的實驗結果整理得到。
資料結構實習-二.
演算法 8-1 最大數及最小數找法 8-2 排序 8-3 二元搜尋法.
: Expect the Expected ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11427: Expect the Expected 解題者:李重儀 解題日期: 2008 年 9 月 21 日 題意:玩一種遊戲 (a game.
Chapter 3 Entropy : An Additional Balance Equation
-Antidifferentiation- Chapter 6 朝陽科技大學 資訊管理系 李麗華 教授.
845: Gas Station Numbers ★★★ 題組: Problem Set Archive with Online Judge 題號: 845: Gas Station Numbers. 解題者:張維珊 解題日期: 2006 年 2 月 題意: 將輸入的數字,經過重新排列組合或旋轉數字,得到比原先的數字大,
Chapter 2. Recurrence Relations (遞迴關係)
介紹不同坐標系之間的轉換 以LS平差方式求解坐標轉換參數
Chapter 10 m-way 搜尋樹與B-Tree
演算法課程 (Algorithms) 國立聯合大學 資訊管理學系 陳士杰老師 Course 7 貪婪法則 Greedy Approach.
第五章 內積空間 5.1 Rn上之長度與點積 5.2 內積空間 5.3 單範正交基底:Gram-Schmidt過程
The Advantages Of Elliptic Curve Cryptography For Wireless Security Computer and Information Security 資工四 謝易霖.
質數 (Prime) 相關問題 (III) — 如何找出相對大的質數 Date: May 27, 2009 Introducer: Hsing-Yen Ann.
Extreme Discrete Summation ★★★★☆ 題組: Contest Archive with Online Judge 題號: Extreme Discrete Summation 解題者:蔡宗翰 解題日期: 2008 年 10 月 13 日.
Probability Distribution 機率分配 汪群超 12/12. 目的:產生具均等分配的數值 (Data) ,並以 『直方圖』的功能計算出數值在不同範圍內出現 的頻率,及繪製數值的分配圖,以反應出該 機率分配的特性。
: Help My Brother ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 11033: Help My Brother 解題者: 呂明璁 解題日期: 2007 年 5 月 14 日.
計算機概論 第6章 數位邏輯設計.
INTRODUCTION TO MATLAB SHAWNNTOU. What Is MATLAB? MATLAB® is a high-performance language for technical computing. MATLAB® is a high-performance language.
第 6 章 迴圈結構 6-1 計數迴圈 6-1 計數迴圈 6-2 條件迴圈 6-2 條件迴圈 6-3 巢狀迴圈 6-3 巢狀迴圈 6-4 While/End While 迴圈 6-4 While/End While 迴圈 6-5 跳出迴圈 6-5 跳出迴圈 6-6 VB.NET 的錯誤處理 6-6 VB.NET.
:Count the Trees ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10007:Count the Trees 解題者:楊家豪 解題日期: 2006 年 3 月 題意: 給 n 個點, 每一個點有自己的 Label,
Broadcast Encryption Scheme Realizing Information Granularity by Tree Structure Source:Cryptology and Information Security Conference 2009 Author: 吳宗成、林喬雯、林燕卿.
: Finding Paths in Grid ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11486: Finding Paths in Grid 解題者:李重儀 解題日期: 2008 年 10 月 14 日 題意:給一個 7 個 column.
:Problem E.Stone Game ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10165: Problem E.Stone Game 解題者:李濟宇 解題日期: 2006 年 3 月 26 日 題意: Jack 與 Jim.
幼兒行為觀察與記錄 第八章 事件取樣法.
結構學 ( 一 ) 第八次作業 97/05/22. 題目一 題目一 (a) 先決定放鬆哪個束制,成為靜定結構 以支承 C 之水平反力為贅力,則 C 點滾支 承變成自由端,即形成靜定基元結構 C 點滿足變位諧和  Δ CH =0.
: How many 0's? ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 11038: How many 0’s? 解題者:楊鵬宇 解題日期: 2007 年 5 月 15 日 題意:寫下題目給的 m 與 n(m
§10.2 对偶空间 一、对偶空间与对偶基 二、对偶空间的有关结果 三、例题讲析.
Presentation transcript:

1 Knapsack Cryptosystems

2 ◎ Merkle-Hellman Knapsack Cryptosystem 觀察: (1) 0/1 knapsack problem (i.e. sum of subset) 例:已知 C = 14, A = (1, 10, 5, 22, 3) 試求一個 Boolean vector M s.t.vector Sol :經 費神計算後 解得 M = (1, 1, 0, 0, 1) ---NP complete 問題 此問題正式描述成: 已知一整數 C 及一向量 ,求一 A 之子集合, 其和為 C ;亦即求一 Boolean vector M 使得 說明: 若將要加密之明文當成 binary string M ,加密金匙為 A ,則 C 為密文矣。 思考:若 C 與 A 已知,則要求出 M 之計算難!! 茲此, Simple Knapsack Problem 被提出。

3 ◎ Merkle-Hellman Knapsack Cryptosystem (2) Simple Knapsack Problem 例: 已知 C = 14, A’ = (1, 3, 5, 10, 22) 試求一 Boolean Vector M s.t. Sol : 計算步驟可在 線性時間 完成;因為 14 < 22 故知此位元為 0 14 > < > = 1 1 所以 M = (1, 1, 0, 1, 0) 此問題可正式描述成: 已知一整數 C 及一具有 Super Increasing 之向量 A’ (所謂 Super Increasing 即 )

4 ◎ Merkle-Hellman Knapsack Cryptosystem 求一 A’ 之子集合,其和為 C ;亦即求一 boolean vector M 使得 THINK : (1) 若 C 與 A’ 已知,則求 M 易矣;因為線性時間即可。 (2) 若 A’ 只讓解密者知悉,則可保安全。 (3) 數學定理: 若 (e, n) = 1 ,則存在唯一整數 d, 0 < d < n ,且 (d, n) = 1 ,使得 ed = 1 mod n 。 Merkle-Hellman Knapsack Cryptosystem : (公開金匙法) Mechanism 如下: 1. 每人任選一 Simple Knapsack ,其中 A’ 是 super increasing , n 是明文 M 的位元數。 2. 任選一整數 u 滿足 。 3. 任選一整數 e 為加密金匙; (e, u) = 1 。 (e, A 是收方之公鑰 ) 4. 計算解密金匙 d 滿足 ed = 1 mod u ; (d, u) = 1 。 (d, A’ 是收方之密鑰 )

5 ◎ Merkl-Hellman Knapsack Cryptosystem 5. 公開 A = (eA’) mod u = 6. 保密 (d, u) …… 祕密金匙。 7. 加密: 8. 解密:

6 ◎ Graham-Shamir Knapsack Public-Key Cryptosystem Mechanism 如下: 1. 每人任選一 Simple Knapsack ,其中 A’ 是 super increasing , n 是明文 M 的位元數。 2. 任選一整數 u 滿足 。 3. 任選一整數 e 為加密金匙; (e, u) = 1 。 4. 計算解密金匙 d 滿足 ed = 1 mod u ; (d, u) = 1 。 5. 公開 A = (eA’) mod u = 6. 保密 (d, u) …… 祕密金匙。 7. 加密: 8. 解密: A’ 之值依次頁所示

7 ◎ Graham-Shamir Knapsack Public-Key Cryptosystem 例示:設 n = 5, A’ = j PS : 以二進制表示之 (R j 及 S j 均是隨機亂數 ) , :其第 j 位元為 1 ,其餘位元為 0 , :其前頭┏ ┓ 位元為 0 以保證不會進位, 為一 Simple Knapsack ; 當明文 M = (0, 1, 0, 0,1) = R I = M S YOU MAY GET M directly