Arbitrary Parameter Extraction, Stationary Phase Migration, and Tomographic Velocity Analysis Jing Chen University of Utah.

Slides:



Advertisements
Similar presentations
Processing and Binning Overview From chapter 14 “Elements of 3D Seismology” by Chris Liner.
Advertisements

Selecting Robust Parameters for Migration Deconvolution University of Utah Jianhua Yu.
SAGEEP 2014 Refraction/Reflection Session Optimized interpretation of SAGEEP 2011 blind refraction data with Fresnel Volume Tomography and Plus-Minus refraction.
First Arrival Traveltime and Waveform Inversion of Refraction Data Jianming Sheng and Gerard T. Schuster University of Utah October, 2002.
Specular-Ray Parameter Extraction and Stationary Phase Migration Jing Chen University of Utah.
Wavepath Migration versus Kirchhoff Migration: 3-D Prestack Examples H. Sun and G. T. Schuster University of Utah.
Reduced-Time Migration of Converted Waves David Sheley and Gerard T. Schuster University of Utah.
Wave-Equation Interferometric Migration of VSP Data Ruiqing He Dept. of Geology & Geophysics University of Utah.
Wave-Equation Interferometric Migration of VSP Data Ruiqing He Dept. of Geology & Geophysics University of Utah.
Wave-equation MVA by inversion of differential image perturbations Paul Sava & Biondo Biondi Stanford University SEP.
Primary-Only Imaging Condition Yue Wang. Outline Objective Objective POIC Methodology POIC Methodology Synthetic Data Tests Synthetic Data Tests 5-layer.
Solving Illumination Problems Solving Illumination Problems in Imaging:Efficient RTM & in Imaging:Efficient RTM & Migration Deconvolution Migration Deconvolution.
TARGET-ORIENTED LEAST SQUARES MIGRATION Zhiyong Jiang Geology and Geophysics Department University of Utah.
CROSSWELL IMAGING BY 2-D PRESTACK WAVEPATH MIGRATION
MULTIPLE PREDICTION & ATTENUATION Ruiqing He University of Utah Feb Feb
3-D Migration Deconvolution Jianxing Hu, GXT Bob Estill, Unocal Jianhua Yu, University of Utah Gerard T. Schuster, University of Utah.
Improve Migration Image Quality by 3-D Migration Deconvolution Jianhua Yu, Gerard T. Schuster University of Utah.
Joint Migration of Primary and Multiple Reflections in RVSP Data Jianhua Yu, Gerard T. Schuster University of Utah.
Analytical image perturbations for wave-equation migration velocity analysis Paul Sava & Biondo Biondi Stanford University.
Key Result Seismic CAT Scan vs Trenching.
FAST VELOCITY ANALYSIS BY PRESTACK WAVEPATH MIGRATION H. Sun Geology and Geophysics Department University of Utah.
Depth (m) Time (s) Raw Seismograms Four-Layer Sand Channel Model Midpoint (m)
Midyear Overview of Year 2001 UTAM Results T. Crosby, Y. Liu, G. Schuster, D. Sheley, J. Sheng, H. Sun, J. Yu and M. Zhou J. Yu and M. Zhou.
3-D PRESTACK WAVEPATH MIGRATION H. Sun Geology and Geophysics Department University of Utah.
Fresnel-zone Traveltime Tomo. for INCO and Mapleton Data Fresnel-zone Traveltime Tomo. for INCO and Mapleton Data Jianming Sheng University of Utah Feb.
Applications of Time-Domain Multiscale Waveform Tomography to Marine and Land Data C. Boonyasiriwat 1, J. Sheng 3, P. Valasek 2, P. Routh 2, B. Macy 2,
MD + AVO Inversion Jianhua Yu, University of Utah Jianxing Hu GXT.
1 Local Reverse Time Migration: P-to-S Converted Wave Case Xiang Xiao and Scott Leaney UTAM, Univ. of Utah Feb. 7, 2008.
Prestack Migration Deconvolution in Common Offset Domain Jianxing Hu University of Utah.
Geology 5640/6640 Introduction to Seismology 18 Feb 2015 © A.R. Lowry 2015 Last time: Spherical Coordinates; Ray Theory Spherical coordinates express vector.
Elastic Inversion Using Partial Stack Seismic Data: Case Histories in China.
Multisource Least-squares Reverse Time Migration Wei Dai.
1 © 2011 HALLIBURTON. ALL RIGHTS RESERVED. VSP modeling, velocity analysis, and imaging in complex structures Yue Du With Mark Willis, Robert Stewart May.
3D Wave-equation Interferometric Migration of VSP Free-surface Multiples Ruiqing He University of Utah Feb., 2006.
V.2 Wavepath Migration Overview Overview Kirchhoff migration smears a reflection along a fat ellipsoid, so that most of the reflection energy is placed.
Attribute- Assisted Seismic Processing and Interpretation 3D CONSTRAINED LEAST-SQUARES KIRCHHOFF PRESTACK TIME MIGRATION Alejandro.
© 2013, PARADIGM. ALL RIGHTS RESERVED. Long Offset Moveout Approximation in Layered Elastic Orthorhombic Media Zvi Koren and Igor Ravve.
Coherence-weighted Wavepath Migration for Teleseismic Data Coherence-weighted Wavepath Migration for Teleseismic Data J. Sheng, G. T. Schuster, K. L. Pankow,
Migration In a Nutshell Migration In a Nutshell Migration In a Nutshell D.S. Macpherson.
Impact of MD on AVO Inversion
Prestack Migration Intuitive Least Squares Migration Green’s Theorem.
1 Local Reverse Time Migration: Salt Flank Imaging by PS Waves Xiang Xiao and Scott Leaney 1 1 Schlumberger UTAM, Univ. of Utah Feb. 8, 2008.
Moveout Correction and Migration of Surface-related Resonant Multiples Bowen Guo*,1, Yunsong Huang 2 and Gerard Schuster 1 1 King Abdullah University of.
Migration Velocity Analysis 01. Outline  Motivation Estimate a more accurate velocity model for migration Tomographic migration velocity analysis 02.
Multisource Least-squares Migration of Marine Data Xin Wang & Gerard Schuster Nov 7, 2012.
Wave-equation migration velocity analysis Biondo Biondi Stanford Exploration Project Stanford University Paul Sava.
Signal Analysis and Imaging Group Department of Physics University of Alberta Regularized Migration/Inversion Henning Kuehl (Shell Canada) Mauricio Sacchi.
Super-virtual Interferometric Diffractions as Guide Stars Wei Dai 1, Tong Fei 2, Yi Luo 2 and Gerard T. Schuster 1 1 KAUST 2 Saudi Aramco Feb 9, 2012.
Wave-Equation Waveform Inversion for Crosswell Data M. Zhou and Yue Wang Geology and Geophysics Department University of Utah.
Migration Velocity Analysis of Multi-source Data Xin Wang January 7,
1 Prestack migrations to inversion John C. Bancroft CREWES 20 November 2001.
3-D Prestack Migration Deconvolution Bob Estill ( Unocal) Jianhua Yu (University of Utah)
Non-local Means (NLM) Filter for Trim Statics Yunsong Huang, Xin Wang, Yunsong Huang, Xin Wang, Gerard T. Schuster KAUST Kirchhoff Migration Kirchhoff+Trim.
Raanan Dafni,  PhD in Geophysics (Tel-Aviv University)  Paradigm R&D ( )  Post-Doc (Rice University) Current Interest: “Wave-equation based.
Fast Least Squares Migration with a Deblurring Filter 30 October 2008 Naoshi Aoki 1.
Resolution. 0 km 7 km 0 km 3 km m = L d T r = [L L] m 0 km 7 km T.
Enhancing Migration Image Quality by 3-D Prestack Migration Deconvolution Gerard Schuster Jianhua Yu, Jianxing Hu University of Utah andGXT
MD+AVO Inversion: Real Examples University of Utah Jianhua Yu.
Zero-Offset Data d = L o ò r ) ( g = d dr r ) ( g = d
Steepest Descent Optimization
Skeletonized Wave-equation Inversion for Q
Skeletonized Wave-Equation Surface Wave Dispersion (WD) Inversion
Non-local Means (NLM) Filter for Trim Statics
Multiple attenuation in the image space
Han Yu, Bowen Guo*, Sherif Hanafy, Fan-Chi Lin**, Gerard T. Schuster
Non-local Means (NLM) Filter for Trim Statics
Migration Resolution.
Processing and Binning Overview
Migration Resolution.
Wave Equation Dispersion Inversion of Guided P-Waves (WDG)
Presentation transcript:

Arbitrary Parameter Extraction, Stationary Phase Migration, and Tomographic Velocity Analysis Jing Chen University of Utah

Outline Parameter Extraction Parameter Extraction Stationary Phase Migration Stationary Phase Migration Tomographic Velocity Analysis Tomographic Velocity Analysis Conclusions Conclusions

Parameter Extraction Extract specular-ray related parameters from prestack migration SG R

Why Specular-Ray Parameters Needed ? Prestack Depth Migration Prestack Depth Migration Traveltime Inversion Traveltime Inversion Tomographic MVA Tomographic MVA AVO AVO Etc... Etc...

Prestack Migration Operator ImageWeightDataAperture

Stationary Phase Approximation

Weighted Prestack Migration Operator ImageWeightDataAperture Parameter

Stationary Phase Approximation

Specular-Ray Related Parameters

R Source Receiver Midpoint Traveltime Reflector Normal Departure Angle Emergence Angle Incidence Angle

Parameter Extraction Synthetic Data Examples: Migrate a COG; Migrate a COG; Extract Midpoint Coordinates, Extract Midpoint Coordinates, Traveltimes, and Incidence Angles. Traveltimes, and Incidence Angles.

Kirchhoff Migration of a COG Distance (km) Depth (km)

Weighted Kirchhoff Migration of a COG Distance (km) Depth (km) Extra Weight

Division of Two COG Images =

COG Incidence Angles (Degrees ) Distance (km) Depth (km)

COG Incidence Angles Distance (km) Depth (km) (Degrees )

COG Traveltimes (Seconds) Distance (km) Depth (km)

COG Traveltimes Distance (km) Depth (km) (Seconds)

COG S-R Midpoint Coordinates 0 20 (km) Distance (km) Depth (km)

COG S-R Midpoint Coordinates 0 20 Distance (km) Depth (km) (km)

Verification of Extracted Parameters Distance (km) Depth (km)

COG S-R Midpoint Coordinates 0 20 Distance (km) Depth (km) (km)

COG Traveltimes Distance (km) Depth (km) (Seconds)

Verification of Extracted Parameters Trace Midpoint Coordinates Time (sec) Trvaeltimes Extracted

Applications Stationary Phase Migration Stationary Phase Migration Tomographic Velocity Analysis Tomographic Velocity Analysis

Stationary Phase Migration Migrate traces within Fresnel zone Migrate traces within Fresnel zone Reject traces out of Fresnel zone Reject traces out of Fresnel zone Suppress alias artifacts Suppress alias artifacts SPM uses specular-ray parameters to :

Stationary Phase Migration Algorithm Algorithm Synthetic Data Example Synthetic Data Example Field Data Example Field Data Example

Stationary Phase Migration Operator Minimum Aperture Fresnel zone width Stationary phase point Fresnel Zone Schleicher et al. (1997) :

Stationary Phase Migration Algorithm Algorithm Synthetic Data Example Synthetic Data Example Field Data Example Field Data Example

Kirchhoff Migration of a COG Distance (km) Depth (km)

Stationary Phase Mig. of a COG Distance (km) Depth (km)

Migration Operator Trace Contributions

Trace Contributions : KM Trace Number Depth (km)

Trace Contributions : SPM Trace Number Depth (km)

Trace Contributions : KM Trace Number Depth (km)

Trace Contributions : SPM Trace Number Depth (km)

Trace Contributions : KM Trace Number Depth (km)

Trace Contributions : SPM Trace Number Depth (km)

(Deg ) Offset (km) Depth (km) CIG Offset (km) Depth (km) Incidence Angle

(Deg ) Offset (km) Depth (km) CIG Offset (km) Depth (km) Incidence Angle

Stacked SPM Image After Muting Distance (km) Depth (km)

Stacked SPM Image Without Muting Distance (km) Depth (km)

Stationary Phase Migration Algorithm Algorithm Synthetic Data Example Synthetic Data Example Field Data Example Field Data Example

Kirchhoff Migration of a COG Distance (km) Depth (km)

Stationary Phase Mig. of a COG Distance (km) Depth (km)

Stacked KM Image Distance (km) Depth (km)

Stacked SPM Image Distance (km) Depth (km)

Stationary Phase Mig. vs Wavepath Mig. SG Both approaches suppress alias artifacts Both approaches suppress alias artifacts WM measures emergence angles in the data domain WM measures emergence angles in the data domain SPM extracts parameters in the migration domain SPM extracts parameters in the migration domain SPM extracts more parameters SPM extracts more parameters WM is faster WM is faster SPM may be more robust in parameter estimations SPM may be more robust in parameter estimations

Applications Stationary Phase Migration Stationary Phase Migration Tomographic Velocity Analysis Tomographic Velocity Analysis

Build up Initial Migration Velocity Build up Initial Migration Velocity Migrate Seismic Data Migrate Seismic Data Obtain S & R Coordinates Obtain S & R Coordinates Find Specular-Ray Paths Find Specular-Ray Paths Pick Depth Residual Moveouts Pick Depth Residual Moveouts Pick Reflector Positions Pick Reflector Positions Update Velocities Update Velocities Migrate Seismic Data With Migrate Seismic Data With Updated Velocities Updated Velocities Repeat Above Steps Repeat Above Steps Steps in Tomographic MVA

Layer-Stripping Iteration Layer-Stripping Iteration Partial Migration Iteration Partial Migration Iteration Reflector Adjustment Iteration Reflector Adjustment Iteration SIRT Iteration SIRT Iteration Four Recursive Iterations

Seismic Data Initial Migration Velocities Kirchhoff Migration + Stationary Phase CIGs Source Xs( Xi,h ) Receiver Xr( Xi,h ) ZO Image Auto Scan Residual Moveouts DZ( Xi,h ) Reflector Positions Xi Xi Preparing Input For Velocity Update Xi DZ( Xi,h ) Xs( Xi,0 ) Xr( Xi,0 ) Xs( Xi,h ) Xr( Xi,h )

Velocity Updating Scheme DZ --> DT 2 Pt. Ray Tracing Initial Mig. Velocity Back Projection: SIRT DT --> DS New Slowness : S=S+DS New DT Misfit Func. Decrease? YesNo SIRT Iteration Adjust Reflector Depths New DZ DZ --> DT Misfit Func. Decrease? STOP No Yes ReflectorAdjustmentIteration

Initial Migration Velocity (ft/sec) Distance (km) Depth (km)

Image With Initial Velocity Distance (km) Depth (km)

Peak-Amplitude Positions Distance (km) Depth (km)

Reflectors Picked Distance (km) Depth (km)

Reflectors Picked Distance (km) Depth (km)

Depth Residuals Picked Horizontal Coordinates Along Reflector (km) Depth Residual Moveouts (m)

Depth Residuals Picked After Median Filtering and Muting Horizontal Coordinates Along Reflector (km) Depth Residual Moveouts (m)

Raypaths Distance (km) Depth (km)

Raypaths Distance (km) Depth (km)

Misfit Function vs Iteration No. SIRT Iterations Reflector Adjustment Iterations Misfit Function Iteration Number

Velocity Increment (ft/sec) Distance (km) Depth (km)

Image With Updated Velocity Distance (km) Depth (km)

Image With Initial Velocity Distance (km) Depth (km)

Common Image Gathers Depth (km) With Initial Velocity

Common Image Gathers Depth (km) With Updated Velocity

Conclusions Specular-ray related parameters can be accurately estimated from presatck migration Specular-ray related parameters can be accurately estimated from presatck migration SPM produces fewer alias artifacts and improves horizon continuity SPM produces fewer alias artifacts and improves horizon continuity Automatic tomographic velocity analysis is able to update the migration velocity Automatic tomographic velocity analysis is able to update the migration velocity

Acknowledgements I thank the 1999 UTAM sponsors for their supports I thank the 1999 UTAM sponsors for their supports I thank Fuhao Qin, Yonghe Sun and JC Wan of Hess for their helps I thank Fuhao Qin, Yonghe Sun and JC Wan of Hess for their helps