Presentation is loading. Please wait.

Presentation is loading. Please wait.

Wave-equation MVA by inversion of differential image perturbations Paul Sava & Biondo Biondi Stanford University SEP.

Similar presentations


Presentation on theme: "Wave-equation MVA by inversion of differential image perturbations Paul Sava & Biondo Biondi Stanford University SEP."— Presentation transcript:

1 paul@sep.stanford.edu Wave-equation MVA by inversion of differential image perturbations Paul Sava & Biondo Biondi Stanford University SEP

2 paul@sep.stanford.edu Motivation

3 paul@sep.stanford.edu Wave-equation MVA (WEMVA) Band-limited Multi-pathing Resolution Born approximation –small anomaly Rytov approximation –phase unwrapping

4 paul@sep.stanford.edu Wave-equation MVA (WEMVA) WE tomography –data space WE MVA –image space

5 paul@sep.stanford.edu Outline 1.WEMVA overview 2.Born image perturbation 3.Differential image perturbation 4.Example

6 paul@sep.stanford.edu A tomography problem Traveltime MVA Wave-equation tomography Wave-equation MVA qq  t traveltime  d data  R image L ray fieldwavefield

7 paul@sep.stanford.edu WEMVA: main idea

8 paul@sep.stanford.edu Born approximation

9 paul@sep.stanford.edu WEMVA: objective function slowness perturbation image perturbation slowness perturbation (unknown) Linear WEMVA operator image perturbation (known)

10 paul@sep.stanford.edu WEMVA: objective function Traveltime MVA Wave-equation tomography Wave-equation MVA tt dd RR

11 paul@sep.stanford.edu Fat ray: GOM example

12 paul@sep.stanford.edu Outline 1.WEMVA overview 2.Born image perturbation 3.Differential image perturbation 4.Example

13 paul@sep.stanford.edu “Data” estimate Traveltime MVA Wave-equation tomography Wave-equation MVA tt dd RR ray tracing data modeling residual migration

14 paul@sep.stanford.edu Prestack Stolt residual migration Background image R 0 Velocity ratio   RR0R0

15 paul@sep.stanford.edu Prestack Stolt residual migration Image perturbation  RR0R0

16 paul@sep.stanford.edu Born approximation

17 paul@sep.stanford.edu Residual migration: the problem Correct velocityIncorrect velocity Zero offset image Angle gathers Zero offset image Angle gathers

18 paul@sep.stanford.edu Born approximation

19 paul@sep.stanford.edu Outline 1.WEMVA overview 2.Born image perturbation 3.Differential image perturbation 4.Example

20 paul@sep.stanford.edu Differential image perturbation Image difference Image differential ComputedMeasured

21 paul@sep.stanford.edu Differential image perturbation RR RR  R 

22 paul@sep.stanford.edu Phase perturbation        

23 paul@sep.stanford.edu Differential image perturbation

24 paul@sep.stanford.edu Born approximation

25 paul@sep.stanford.edu Example: background image Zero offset image Angle gathers Background image

26 paul@sep.stanford.edu Example: differential image Zero offset image Angle gathers Differential image

27 paul@sep.stanford.edu Example: slowness inversion Slowness perturbation Image perturbation

28 paul@sep.stanford.edu Example: updated image Updated slowness Updated image

29 paul@sep.stanford.edu Example: correct image Correct slowness Correct image

30 paul@sep.stanford.edu Outline 1.WEMVA overview 2.Born image perturbation 3.Differential image perturbation 4.Example

31 paul@sep.stanford.edu Field data example North Sea –Salt environment –Subset –One non-linear iteration Migration (background image) Residual migration (image perturbation) Slowness inversion (slowness perturbation) Slowness update (updated slowness) Re-migration (updated image) location depth

32 paul@sep.stanford.edu locationdepth

33 paul@sep.stanford.edu depth velocity ratio

34 paul@sep.stanford.edu locationdepth

35 paul@sep.stanford.edu locationdepthlocation

36 paul@sep.stanford.edu locationdepthlocation

37 paul@sep.stanford.edu locationdepth

38 paul@sep.stanford.edu locationdepth

39 paul@sep.stanford.edu Summary MVA –Wavefield extrapolation methods –Born linearization –Differential image perturbations Key points –Band-limited (sharp velocity contrasts) –Multi-pathing (complicated wavefields) –Resolution (frequency redundancy)

40 paul@sep.stanford.edu

41 MVA information (a) Traveltime MVAWave-equation MVA Offset focusing (flat ADCIG)  z  z xx

42 paul@sep.stanford.edu MVA information (b) Traveltime MVAWave-equation MVA Offset focusing (flat ADCIG) Spatial focusing  z  z xx

43 paul@sep.stanford.edu MVA information (c) Traveltime MVAWave-equation MVA Offset focusing (flat ADCIG) Spatial focusing Frequency redundancy    

44 paul@sep.stanford.edu     WEMVA cost reduction Full image –Offset focusing –Spatial focusing –Frequency Normal incidence image –Spatial focusing –“fat” rays

45 paul@sep.stanford.edu Another example

46 paul@sep.stanford.edu Example: correct model Zero offset image Angle gathers

47 paul@sep.stanford.edu Example: background model Zero offset image Angle gathers

48 paul@sep.stanford.edu Example: correct perturbation Zero offset image Angle gathers

49 paul@sep.stanford.edu Example: differential perturbation Zero offset image Angle gathers

50 paul@sep.stanford.edu Example: perturbations comparison Differential Difference Correct

51 paul@sep.stanford.edu Example: differential perturbation Zero offset image Angle gathers

52 paul@sep.stanford.edu Example: difference perturbation Zero offset image Angle gathers

53 paul@sep.stanford.edu Example: updated model Zero offset image Angle gathers

54 paul@sep.stanford.edu Example: correct model Zero offset image Angle gathers


Download ppt "Wave-equation MVA by inversion of differential image perturbations Paul Sava & Biondo Biondi Stanford University SEP."

Similar presentations


Ads by Google