Presentation is loading. Please wait.

Presentation is loading. Please wait.

Skeletonized Wave-equation Inversion for Q

Similar presentations


Presentation on theme: "Skeletonized Wave-equation Inversion for Q"β€” Presentation transcript:

1 Skeletonized Wave-equation Inversion for Q
Gaurav Dutta and Gerard T. Schuster* Department of Earth Science & Engineering King Abdullah University of Science and Technology October 18, 2016

2 Outline Motivation Theory of WQ Numerical Examples Limitations
Predicted Observed 𝑓 π‘œπ‘π‘  𝑓 π‘π‘Žπ‘™π‘ Motivation Theory of WQ Numerical Examples Synthetic Data Examples Field Data Example Limitations Conclusions

3 Outline Motivation Theory of WQ Numerical Examples Limitations
Synthetic Data Examples Field Data Example Limitations Conclusions

4 Motivation for Q Compensation
Offshore Brunei (Gamar et al., 2015)

5 Motivation for Q compensation
North Sea (Valenciano and Chemingui, 2012)

6 Motivation for Q Compensation
Offshore Brazil (Zhou et al., 2011)

7 Motivation for Q Compensation
Problem: FWI Q(x,y,z) not robust Solution: Skeletonized Inversion for Q Predicted Observed Frequency (Hz) Amp. Spectrum Predicted Observed Time Ξ”f πœ–= 1 2 𝑠 π‘Ÿ Δ𝑓 2 e= Y. Quan & Jerry Harris, 1997, Seismic attenuation tomography using the frequency shift method

8 Outline Theory of WQ Motivation Numerical Examples Limitations
Synthetic Data Examples Field Data Example Limitations Conclusions

9 FWI vs Skeletal Inversion FWI vs Skeletal Inversion
True Q Model Q Observed Traces vs Predicted Traces 200 d(t) 2 time e=||dpred - dobs ||2 vs Model Z (km) 80 FWI gets stuck in local minima e 4 local minima 40 1 2 3 X (km) Model

10 FWI vs Skeletal Inversion FWI vs Skeletal Inversion
Observed vs Predicted Spectra True Q Model Q Skeletal data = Peak Frequency 200 D(f) 2 fpred 80 fobs Frequency (Hz) Z (km) e=||fpred - fobs ||2 vs Model Skeletal inversion = rapid convergence 4 e global minima 40 1 2 3 X (km) Model

11 Similarities with Wave-equation Traveltime Inversion
Wave-equation traveltime tomography (Luo and Schuster, 1991; Woodward 1992) Properties Wave-equation Q tomography (Dutta and Schuster, 2016) πœ–= 1 2 𝑠 π‘Ÿ Ξ”πœ 𝒙 π‘Ÿ , 𝒙 𝑠 2 Misfit function: πœ–= 1 2 𝑠 π‘Ÿ Δ𝑓 𝒙 π‘Ÿ , 𝒙 𝑠 2 Ξ”πœ Predicted Observed Ξ”f πœ•πœ– πœ•π‘(𝒙) =βˆ’ 𝑠 π‘Ÿ πœ•Ξ”πœ πœ•π‘ 𝒙 Ξ”πœ( 𝒙 π‘Ÿ , 𝒙 𝑠 ) Gradient: πœ•πœ– πœ•π‘„(𝒙) =βˆ’ 𝑠 π‘Ÿ πœ•Ξ”π‘“ πœ•π‘„ 𝒙 Δ𝑓( 𝒙 π‘Ÿ , 𝒙 𝑠 )

12 Wave-equation Q Tomography
There are 3 steps in WQ: 1) Misfit function πœ–: πœ–= 1 2 𝑠 π‘Ÿ Δ𝑓 𝒙 π‘Ÿ , 𝒙 𝑠 2 Δ𝑓= 𝑓 π‘π‘Žπ‘™π‘ ( 𝒙 π‘Ÿ , 𝒙 𝑠 )βˆ’ 𝑓 π‘œπ‘π‘  ( 𝒙 𝒓 , 𝒙 𝑠 ) πœ•πœ– πœ•π‘„(𝒙) =βˆ’ 𝑠 π‘Ÿ πœ•Ξ”π‘“ πœ•π‘„ 𝒙 Δ𝑓( 𝒙 π‘Ÿ , 𝒙 𝑠 ) Δ𝑓 2) Frechet Derivative : df/dQ = We know dP/dQ from wave equation 3) Gradient: Q(k+1) = Q(k) - a πœ•πœ– πœ•π‘„ . Smear frequency-shift residuals along wavepaths Wave-equation Q tomography (Dutta and Schuster, 2016)

13 Viscoacoustic Wave Equation
SLS Model Time-domain visco-acoustic wave equation: πœ•π‘ƒ πœ•π‘‘ +𝐾 𝜏+1 𝛻⋅𝒗 + π‘Ÿ 𝑝 =𝑓( 𝒙 𝑠 ,𝑑) πœ•π’— πœ•π‘‘ + 1 𝜌 𝛻𝑃=0 πœ• π‘Ÿ 𝑝 πœ•π‘‘ + 1 𝜏 𝜎 π‘Ÿ 𝑝 +𝜏𝐾 𝛻⋅𝒗 =0 𝑃= Pressure 𝒗= Particle velocity π‘Ÿ 𝑝 = Memory variable 𝜏 πœ– , 𝜏 𝜎 = Strain/Stress relaxation times 𝜏 𝜎 = 𝑄 2 βˆ’ 1 𝑄 πœ” 𝜏 πœ– = 𝑄 𝑄 πœ” = 2 𝑄 1 𝑄 𝑄 2 𝜏= 𝜏 πœ– 𝜏 𝜎 βˆ’1 𝑓= Point-source function

14 Outline Numerical Examples Motivation Theory of WQ
Synthetic Data Examples Field Data Example Limitations Conclusions

15 Synthetic Example True Q Model Acquisition 60 sources 200 receivers
Predicted Observed 𝑓 π‘œπ‘π‘  𝑓 π‘π‘Žπ‘™π‘ 200 2 Z (km) 80 Acquisition 60 sources 200 receivers 𝑓 π‘π‘’π‘Žπ‘˜ = 15 Hz 4 40 1 2 3 X (km)

16 Synthetic Example True Q Model WQ Tomogram Q Q 200 200 2 Z (km) 80 80
𝑓 π‘œπ‘π‘  𝑓 π‘π‘Žπ‘™ Δ𝑓 Predicted Observed Synthetic Example True Q Model WQ Tomogram Q Q 200 200 2 Z (km) 80 80 4 40 40 1 2 3 X (km) 1 2 3 X (km)

17 Synthetic Example True Q Model WQ Tomogram Q 10000 0.5 Z (km) 1.5 20 Q
Observed Synthetic Example Predicted True Q Model Q 10000 0.5 Z (km) 1.5 20 WQ Tomogram 0.5 1.5 4 8 12 Z (km) X (km) 20 10000 Q

18 Standard RTM 1 2 Z (km) 4 8 12 X (km)

19 Standard LSRTM 1 2 Z (km) 4 8 12 X (km)

20 Q LSRTM 1 2 Z (km) 4 8 12 X (km)

21 Standard RTM 1 2 Z (km) 4 8 12 X (km)

22 Outline Numerical Examples Motivation Theory of WQ Field Data Example
Synthetic Data Examples Field Data Example Limitations Conclusions

23 Crosswell Field Data 183 m 9 m 9 m 3 m 3 m 305 m 293 m Reflector
96 receivers 98 sources Data Sampling: ΒΌ ms Total Record Length: s

24 Crosswell Field Data Velocity Tomogram Q Tomogram Q 50 100 150 X (m)
30 40 60 70 km/s 2.1 Z (m) 100 200 300 1.9 1.7 1.5 50 100 150 X (m)

25 Predicted vs Observed Peak Frequencies
4 8 12 Hz 50 100 150 200 Source Index 100 200 300 400 Receiver Index

26 Crosswell Field Data Standard Migration Q-PSDM Z (m) 100 200 300 50
150 X (m) Standard Migration 50 100 150 X (m) Q-PSDM

27 Crosswell Field Data Standard Migration Q-PSDM Z (m) 100 200 300 50
150 X (m) 50 100 150 X (m)

28 Outline Conclusions Conclusions Motivation Theory of WQ
Numerical Examples Synthetic Data Examples Field Data Example Limitations Conclusions Motivation Theory of WQ Numerical Examples Synthetic Data Examples Field Data Example Limitations Conclusions

29 Limitations Low-Intermediate Q resolution
Velocity-Q ambiguity: Q οƒ  time delays Sequential Q and V inversion, or possibly simultaneous Q+V inversion

30 Outline Conclusions Motivation Theory of WQ Numerical Examples
Synthetic Data Examples Field Data Example Limitations Conclusions

31 Backpropagated weighted residual
Conclusions A novel wave-equation Q tomography method is presented. Predicted Observed 𝑓 π‘œπ‘π‘  𝑓 π‘π‘Žπ‘™π‘ πœ–= 1 2 𝑠 π‘Ÿ Δ𝑓 𝒙 π‘Ÿ , 𝒙 𝑠 2 Δ𝑓= 𝑓 π‘π‘Žπ‘™π‘ ( 𝒙 π‘Ÿ , 𝒙 𝑠 )βˆ’ 𝑓 π‘œπ‘π‘  ( 𝒙 𝒓 , 𝒙 𝑠 ) β‰ˆ 𝑠 π‘Ÿ βˆ«π‘‘π‘‘ 𝛻⋅𝒗(𝒙,𝑑; 𝒙 𝑠 ) 𝑔 𝒙 π‘Ÿ ,βˆ’π‘‘;𝒙,0 βˆ—π‘ƒ 𝒙 π‘Ÿ ,𝑑; 𝒙 𝑠 π‘œπ‘π‘  Δ𝑓( 𝒙 π‘Ÿ , 𝒙 𝑠 ) Gradient: Source Backpropagated weighted residual βˆ«π›Ό 𝑑𝑙=Δ𝑓

32 Conclusions Inverted Q tomograms β‡’ Improvements in imaging.
Standard Migration 1 2 Z (km) 4 8 12 X (km)

33 Conclusions Inverted Q tomograms β‡’ Improvements in imaging. Q-PSDM 1 2
Z (km) 4 8 12 X (km)

34 Conclusions Inverted Q tomograms β‡’ Improvements in imaging.
Z (m) 100 200 300 50 150 X (m) Standard Migration Q-PSDM

35 Limitations Low-Intermediate Q resolution Velocity-Q ambiguity
Sequential Q and V inversion, or possibly simultaneous Q+V inversion

36 Acknowledgements SEG for providing this platform.
Sponsors of the CSIM consortium. Exxon for the Friendswood data. KAUST Supercomputing Laboratory and IT Research Computing Group.

37 Motivation for Q Compensation
Problem: Q distorts amplitude and phase of propagating waves. Q=1000 Q=40 Q=20 2 4 8 X (km) Z (km) 𝑓 π‘π‘’π‘Žπ‘˜ =20 Hz

38 Motivation for Q Compensation
Problem: Q distorts amplitude and phase of propagating waves. Q=1000 Q=40 Q=20 2 4 8 X (km) Z (km) 𝑓 π‘π‘’π‘Žπ‘˜ =20 Hz

39 Motivation for Q Compensation
Problem: Q distorts amplitude and phase of propagating waves. Q=1000 Q=40 Q=20 2 4 8 X (km) Z (km) 𝑓 π‘π‘’π‘Žπ‘˜ =20 Hz


Download ppt "Skeletonized Wave-equation Inversion for Q"

Similar presentations


Ads by Google