9/01/05ELEC5970-001/6970-001 Lecture 41 ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.

Slides:



Advertisements
Similar presentations
Lecture Metal-Oxide-Semiconductor (MOS) Field-Effect Transistors (FET) MOSFET Introduction 1.
Advertisements

ECA1212 Introduction to Electrical & Electronics Engineering Chapter 6: Field Effect Transistor by Muhazam Mustapha, October 2011.
Physical structure of a n-channel device:
9/15/05ELEC / Lecture 71 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
MODULE SYSTEM LOGIC GATE CIRCUIT DQ CMOS Inverter ASIC Full-Custom Semi-Custom Programmable FPGA PLD Cell-Based Gate Arrays General Purpose DRAM & SRAM.
Metal-Oxide-Semiconductor Fields Effect Transistors (MOSFETs) From Prof. J. Hopwood.
Digital Integrated Circuits© Prentice Hall 1995 Devices The MOS Transistor.
Design and Implementation of VLSI Systems (EN1600) Lecture08 Prof. Sherief Reda Division of Engineering, Brown University Spring 2008 [sources: Weste/Addison.
Fall 06, Sep 19, 21 ELEC / Lecture 6 1 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.
Copyright Agrawal & Srivaths, 2007 Low-Power Design and Test, Lecture 2 1 Low-Power Design and Test Dynamic and Static Power in CMOS Vishwani D. Agrawal.
8/29/06 and 8/31/06 ELEC / Lecture 3 1 ELEC / (Fall 2006) Low-Power Design of Electronic Circuits (ELEC 5970/6970) Low Voltage.
Copyright Agrawal, 2007 ELEC5270/6270 Spring 09, Lecture 4 1 ELEC / Spring 2009 Low-Power Design of Electronic Circuits Power Dissipation.
9/23-30/04ELEC / ELEC / (Fall 2004) Advanced Topics in Electrical Engineering Designing VLSI for Low-Power and Self-Test.
10/25/05ELEC / Lecture 151 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
9/08/05ELEC / Lecture 51 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
8/22/06 and 8/24/06 ELEC / Lecture 2 1 ELEC / (Fall 2006) Low-Power Design of Electronic Circuits (ELEC 5270/6270) Power.
Spring 2007EE130 Lecture 35, Slide 1 Lecture #35 OUTLINE The MOS Capacitor: Final comments The MOSFET: Structure and operation Reading: Chapter 17.1.
10/8/2004EE 42 fall 2004 lecture 171 Lecture #17 MOS transistors MIDTERM coming up a week from Monday (October 18 th ) Next Week: Review, examples, circuits.
Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 5 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Low Voltage Low-Power Devices Vishwani.
8/30/05ELEC / Lecture 31 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
11/5/2004EE 42 fall 2004 lecture 281 Lecture #28 PMOS LAST TIME: NMOS Electrical Model – NMOS physical structure: W and L and d ox, TODAY: PMOS –Physical.
9/13/05ELEC / Lecture 61 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
8/18/05ELEC / Lecture 11 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
10/11/05ELEC / Lecture 121 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
The metal-oxide field-effect transistor (MOSFET)
CSCE 612: VLSI System Design Instructor: Jason D. Bakos.
11/3/2004EE 42 fall 2004 lecture 271 Lecture #27 MOS LAST TIME: NMOS Electrical Model – Describing the I-V Characteristics – Evaluating the effective resistance.
Reading: Finish Chapter 6
Week 9a OUTLINE MOSFET ID vs. VGS characteristic
8/23-25/05ELEC / Lecture 21 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
10/20/05ELEC / Lecture 141 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
Fall 06, Sep 14 ELEC / Lecture 5 1 ELEC / (Fall 2006) Low-Power Design of Electronic Circuits (Formerly ELEC / )
Chap. 5 Field-effect transistors (FET) Importance for LSI/VLSI –Low fabrication cost –Small size –Low power consumption Applications –Microprocessors –Memories.
Introduction to CMOS VLSI Design Nonideal Transistors.
Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 6 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Dynamic Power: Device Sizing Vishwani.
EE314 IBM/Motorola Power PC620 IBM Power PC 601 Motorola MC68020 Field Effect Transistors.
ELEC 121 ELEC 121 Author unknown whsmsepiphany4.googlepages.com
© Digital Integrated Circuits 2nd Devices VLSI Devices  Intuitive understanding of device operation  Fundamental analytic models  Manual Models  Spice.
Lecture 19 OUTLINE The MOSFET: Structure and operation
Semiconductor Devices III Physics 355. Transistors in CPUs Moore’s Law (1965): the number of components in an integrated circuit will double every year;
Modern VLSI Design 3e: Chapter 2 Copyright  1998, 2002 Prentice Hall PTR Topics n Derivation of transistor characteristics.
EE130/230A Discussion 11 Peng Zheng.
ECE 331 – Digital System Design Transistor Technologies, and Realizing Logic Gates using CMOS Circuits (Lecture #23)
EEE1012 Introduction to Electrical & Electronics Engineering Chapter 7: Field Effect Transistor by Muhazam Mustapha, October 2010.
KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft KIT, Institut für Prozessdatenverarbeitung.
ECE 342 Electronic Circuits 2. MOS Transistors
EE466: VLSI Design Power Dissipation. Outline Motivation to estimate power dissipation Sources of power dissipation Dynamic power dissipation Static power.
MOS Capacitors MOS capacitors are the basic building blocks of CMOS transistors MOS capacitors distill the basic physics of MOS transistors MOS capacitors.
Mary Jane Irwin ( ) CSE477 VLSI Digital Circuits Fall 2002 Lecture 04: CMOS Inverter (static view) Mary Jane.
1 The Physical Structure (NMOS) Field Oxide SiO2 Gate oxide Field Oxide n+ Al SiO2 Polysilicon Gate channel L P Substrate D S L W (D) (S) Metal n+ (G)
© Digital Integrated Circuits 2nd Devices Digital Integrated Circuits A Design Perspective The Devices Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.
1 Metal-Oxide-Semicondutor FET (MOSFET) Copyright  2004 by Oxford University Press, Inc. 2 Figure 4.1 Physical structure of the enhancement-type NMOS.
ECE 875: Electronic Devices Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE340 ELECTRONICS I MOSFET TRANSISTORS AND AMPLIFIERS.
1 The Physical Structure (NMOS) Field Oxide SiO2 Gate oxide Field Oxide n+ Al SiO2 Polysilicon Gate channel L P Substrate D S L W (D) (S) Metal n+ (G)
Junction Capacitances The n + regions forms a number of planar pn-junctions with the surrounding p-type substrate numbered 1-5 on the diagram. Planar junctions.
Chapter 2 MOS Transistors. 2.2 STRUCTURE AND OPERATION OF THE MOS TRANSISTOR.
Budapest University of Technology and Economics Department of Electron Devices Microelectronics, BSc course Field effect transistors.
UNIT I MOS TRANSISTOR THEORY AND PROCESS TECHNOLOGY
VLSI System Design Lect. 2.2 CMOS Transistor Theory2 Engr. Anees ul Husnain ( Department of Electronics.
HO #3: ELEN Review MOS TransistorsPage 1S. Saha Long Channel MOS Transistors The theory developed for MOS capacitor (HO #2) can be directly extended.
Integrated Circuit Devices Professor Ali Javey Summer 2009 MOSFETs Reading: Chapters 17 & 18.
1 Very Low Voltage Operation of Benchmark Circuit c6288 Presented By: - Murali Dharan.
ELEC Digital Logic Circuits Fall 2015 Delay and Power Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and Computer Engineering.
ELEC Digital Logic Circuits Fall 2014 Delay and Power Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and Computer Engineering.
Copyright Agrawal 2007ELEC / Spr 2015 Lecture 2 Jan ELEC / Spring 2015 Low-Power Design of Electronic Circuits Power.
LOW POWER DESIGN METHODS
Damu, 2008EGE535 Fall 08, Lecture 21 EGE535 Low Power VLSI Design Lecture #2 MOSFET Basics.
EE314 IBM/Motorola Power PC620 IBM Power PC 601 Motorola MC68020 Field Effect Transistors.
CSV881: Low-Power Design Power Dissipation in CMOS Circuits
Presentation transcript:

9/01/05ELEC / Lecture 41 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits Low Voltage Low Power Devices Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and Computer Engineering Auburn University

9/01/05ELEC / Lecture 42 Threshold Voltage, V t < V g < V t Depletion region Polysilicon gate SiO 2 p-type body +-+- V g > V t Depletion region Polysilicon gate SiO 2 p-type body V t is a function of: Dopant concentration Thickness of oxide

9/01/05ELEC / Lecture 43 Bulk nMOSFET n+ p-type body (bulk) n+ L W SiO 2 Thickness = t ox Gate Source Drain Polysilicon V gs V gd

9/01/05ELEC / Lecture 44 α-Power Law Model V gs > V t and V ds > V dsat = V gs –V t (Saturation region): β I ds =P c ─ (V gs – V t ) α 2 whereβ=μC ox W/L For fully ON transistor, V gs = V ds = V DD : β I dsat =P c ─ (V DD – V t ) α 2 T. Sakurai and A. R. Newton, “Alpha-Power Law MOSFET Model and Its Applications to CMOS Inverter Delay and Other Formulas,” IEEE J. Solid State Circuits, vol. 25, no. 2, pp , 1990.

9/01/05ELEC / Lecture 45 α-Power Law Model (Cont.) V gs = 1.8V Shockley α-power law Simulation V ds I ds (μA) I dsat

9/01/05ELEC / Lecture 46 α-Power Law Model (Cont.) 0V gs < V t,cutoff I ds =I dsat ×V ds /V dsat V ds < V dsat,linear I dsat V ds >V dsat,saturation V dsat =P v (V gs – V t ) α/2

9/01/05ELEC / Lecture 47 α-Power Law Model (Cont.) α = 2, for long channel devices or low V DD α ~ 1, for short channel devices

9/01/05ELEC / Lecture 48 Power and Delay Power=CV DD 2 CV DD 1 1 Inverter delay=──── (─── + ─── ) 4 I dsatn I dsatp KV DD =─────── (V DD – V t ) α

9/01/05ELEC / Lecture 49 Power-Delay Product V DD 3 Power × Delay=constant ×─────── (V DD – V t ) α 0.6V1.8V3.0V V DD Power Delay

9/01/05ELEC / Lecture 410 Optimum Threshold Voltage For minimum power-delay product: 3V t V DD =─── 3 – α For long channel devices, α = 2, V DD = 3V t For very short channel devices, α = 1, V DD = 1.5V t

9/01/05ELEC / Lecture 411 Leakage IGIG IDID I sub I PT I GIDL n+ Ground V DD R

9/01/05ELEC / Lecture 412 Leakage Current Components Subthreshold conduction, I sub Reverse bias pn junction conduction, I D Gate induced drain leakage, I GIDL due to tunneling at the gate-drain overlap Drain source punchthrough, I PT due to short channel and high drain-source voltage Gate tunneling, I G through thin oxide

9/01/05ELEC / Lecture 413 Subthreshold Leakage V gs – V t Isub=I 0 exp( ───── ) nv th V V gs I ds 1mA 100μA 10μA 1μA 100nA 10nA 1nA 100pA 10pA VtVt Subthreshold region Saturation region

9/01/05ELEC / Lecture 414 Normal CMOS Inverter Polysilicon (input) SiO 2 p+ n+ p+ n+ n-well p-substrate (bulk) metal 1 V DD GND output input output VDD GND o

9/01/05ELEC / Lecture 415 Leakage Reduction by Body Bias Polysilicon (input) SiO 2 p+ n+ p+ n+ n-well p-substrate (bulk) metal 1 V DD GND output input output V BBp V DD GND V BBn V BBp o

9/01/05ELEC / Lecture 416 Body Bias, V BBn < V g < V t Depletion region Polysilicon gate SiO 2 p-type body +-+- V g < Polysilicon gate SiO 2 p-type body V t is a function of: Dopant concentration Thickness of oxide

9/01/05ELEC / Lecture 417 Further on Body Bias Large body bias can increase gate leakage (I G ) via tunneling through oxide. Body bias is kept less than 0.5V. For V DD = 1.8V: V BBn = -0.4V V BBp = 2.2V

9/01/05ELEC / Lecture 418 Summary Device scaling down reduces supply voltage –Reduced power –Increases delay Optimum power-delay product by scaling down threshold voltage Threshold voltage reduction increases subthreshold leakage power –Use body bias to reduce subthreshold leakage –Body bias may increase gate leakage