Victoria04 R. Frey1 Silicon/Tungsten ECal Status and Progress Ray Frey University of Oregon Victoria ALCPG Workshop July 29, 2004 Overview Current R&D.

Slides:



Advertisements
Similar presentations
R&D for ECAL VFE technology prototype -Gerard Bohner -Jacques Lecoq -Samuel Manen LPC Clermond-Ferrand, Fr -Christophe de La Taille -Julien Fleury -Gisèle.
Advertisements

Testbeam Requirements for LC Calorimetry S. R. Magill for the Calorimetry Working Group Physics/Detector Goals for LC Calorimetry E-flow implications for.
7 January 2005 MDI Workshop M. Breidenbach 1 SiD Electronic Concepts SLAC –D. Freytag –G. Haller –J. Deng –mb Oregon –J. Brau –R. Frey –D. Strom BNL –V.
Mechanical Status of ECAL Marc Anduze – 30/10/06.
R Frey 9/15/20031 Si/W ECal Update Outline Progress on silicon and tungsten Progress on readout electronics EGS4 v Geant4 Ray Frey M. Breidenbach, D. Freytag,
7 June 2006 SLAC DOE Review M. Breidenbach 1 KPiX & EMCal SLAC –D. Freytag –G. Haller –R. Herbst –T. Nelson –mb Oregon –J. Brau –R. Frey –D. Strom BNL.
Design Considerations for a Si/W EM Cal. at a Linear Collider M. Breidenbach, D. Freytag, G. Haller, M. Huffer, J.J Russell Stanford Linear Accelerator.
R Frey ESTB20111 Silicon-Tungsten Electromagnetic Calorimeter R&D Collaboration M. Breidenbach, D. Freytag, N. Graf, R. Herbst, G. Haller, J. Jaros, T.
NIU Workshop R. Frey1 Reconstruction Issues for Silicon/Tungsten ECal R. Frey U. Oregon NIU Workshop, Nov 8, 2002.
28 June 2002Santa Cruz LC Retreat M. Breidenbach1 SD – Silicon Detector EM Calorimetry.
ICLC Paris R. Frey1 Silicon/Tungsten ECal for SiD – Status and Progress Ray Frey University of Oregon ICLC Paris, April 22, 2004 Overview (brief) Current.
27 th May 2004Daniel Bowerman1 Dan Bowerman Imperial College 27 th May 2004 Status of the Calice Electromagnetic Calorimeter.
Module Production for The ATLAS Silicon Tracker (SCT) The SCT requirements: Hermetic lightweight tracker. 4 space-points detection up to pseudo rapidity.
LCWS2002 R. Frey1 Silicon/Tungsten ECal for the SD Detector M. Breidenbach, D. Freytag, G. Haller, M. Huffer, J.J Russell Stanford Linear Accelerator Center.
ITBW07 R. Frey1 ECal with Integrated Electronics Ray Frey, U of Oregon Ongoing R&D Efforts: CALICE silicon-tungsten ECal – 2 parallel efforts:  Technology.
SiD Cal R. Frey1 Some EGS Studies… Compare with Geant4  Questions of range/cutoff parameters EM Resolution understood? Moliere radius – readout gap relation.
19 March 2005 LCWS 05 M. Breidenbach 1 SiD Electronic Concepts SLAC –D. Freytag –G. Haller –J. Deng –mb Oregon –J. Brau –R. Frey –D. Strom BNL –V. Radeka.
SiD EMCal Testbeam Prototype M. Breidenbach for the SiD EMCal and Electronics Subsystems.
R Frey SiD at SLAC1 SiD ECal overview Physics (brief) Proposed technical solutions: silicon/tungsten  “traditional” Si sensors  MAPS Progress and Status.
1 Si-W ECal with Integrated Readout Mani Tripathi University of California, Davis LCWS08 Chicago Nov 17, 2008.
L.Royer– Calice DESY – July 2010 Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand R&D LPC Clermont-Fd dedicated to the.
Mechanical Status of EUDET Module Marc Anduze – 05/04/07.
ASIC R&D at Fermilab R. Yarema October 30, Long Range Planning Committee2 ASICs are Critical to Most Detector Systems SVX4 – CDF & DO VLPC readout.
Silicon-Tungsten EM Calorimeter R&D
Fine Pixel CCD for ILC Vertex Detector ‘08 7/31 Y. Takubo (Tohoku U.) for ILC-FPCCD vertex group ILC vertex detector Fine Pixel CCD (FPCCD) Test-sample.
EUDET JRA3 ECAL and FEE C. de La Taille (LAL-Orsay) EUDET status meeting DESY 10 sep 2006.
FPCCD option Yasuhiro Sugimoto 2012/5/24 ILD 1.
EUDET JRA3 ECAL in 2007 : towards “The EUDET module” C. de La Taille IN2P3/LAL Orsay.
Apollo Go, NCU Taiwan BES III Luminosity Monitor Apollo Go National Central University, Taiwan September 16, 2002.
R Frey SiD ECal at ALCPG071 SiD ECal overview Physics requirements Proposed technical solutions: silicon/tungsten  “traditional” Si diodes  MAPS LOI.
Silicon Detector Tracking ALCPG Workshop Cornell July 15, 2003 John Jaros.
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
1 R&D Advances: SiW Calorimeter LCWS 2010 Beijing SiD Concept Meeting March 28, 2010 John Jaros for SiD SiW Group (thanks to Ray, Ryan, Mani, and Marco.
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
- Performance Studies & Production of the LHCb Silicon Tracker Stefan Koestner (University Zurich) on behalf of the Silicon Tracker Collaboration IT -
Rutherford Appleton Laboratory Particle Physics Department G. Villani CALICE MAPS Siena October th Topical Seminar on Innovative Particle and.
BeamCal Electronics Status FCAL Collaboration Meeting LAL-Orsay, October 5 th, 2007 Gunther Haller, Dietrich Freytag, Martin Breidenbach and Angel Abusleme.
R Frey LCWS071 A Silicon-Tungsten ECal with Integrated Electronics for the ILC -- status Currently optimized for the SiD concept Baseline configuration:
Readout Architecture for MuCh Introduction of MuCh Layout of Much ( proposed several schemes) Read ASIC’s Key features Basic Readout chain ROC Block Diagram.
August DESY-HH VFCAL Report W. Lohmann, DESY Infrastructure for sensor diagnostics FE Electronics Development Sensor test facilities Laser Alignment.
EMCal Sensor Status (* M. Breidenbach*,
Marc Anduze – CALICE Meeting – KOBE 10/05/07 Mechanical R&D for Technological EUDET ECAL Prototype.
SuperKEKB 3nd open meeting July 7-9, 2009 Hans-Günther Moser MPI für Physik Sensor and ASIC R&D Sensor Prototype Production: running, ASICs: Switcher,
S. Bota – Calorimeter Electronics overview - July 2002 Status of SPD electronics Very Front End Review of ASIC runs What’s new: RUN 4 and 5 Next Actions.
Silicon/Tungsten ECal for the SD Detector – Status and Progress R. Frey U. Oregon UT Arlington, Jan 10, 2003.
5 May 2006Paul Dauncey1 The ILC, CALICE and the ECAL Paul Dauncey Imperial College London.
VMM Update Front End ASIC for the ATLAS Muon Upgrade V. Polychronakos BNL RD51 - V. Polychronakos, BNL10/15/131.
Front-end Electronic for the CALICE ECAL Physic Prototype Christophe de La Taille Julien Fleury Gisèle Martin-Chassard Front-end Electronic for the CALICE.
SiW ECAL Marcel Reinhard LLR – École polytechnique LCWS ‘08, Chicago.
Durham TB R. Frey1 ECal R&D in N. America -- Test Beam Readiness/Plans Silicon-tungsten SLAC, Oregon, Brookhaven (SOB) Scintillator tiles – tungsten U.
DESY BT analysis - updates - S. Uozumi Dec-12 th 2011 ScECAL meeting.
1 Status Report on ADC LPC Clermont-Ferrand Laurent ROYER, Samuel MANEN Calice/Eudet electronic meeting London 2008.
SKIROC status Calice meeting – Kobe – 10/05/2007.
Marc Anduze first drawings of Ecal eudet module COPIED FROM : Marc Anduze PICTURES FROM : CALICE/EUDET electronic meeting – CERN – 12 July 07.
Understanding of SKIROC performance T. Frisson (LAL) On behalf of the SiW ECAL team Special thanks to the electronic and DAQ experts: Stéphane Callier,
Marc Anduze – EUDET Meeting – PARIS 08/10/07 Mechanical R&D for EUDET module.
A General Purpose Charge Readout Chip for TPC Applications
Time-Over-Threshold Readout Long Ladder Readout Noise
ECAL EUDET MODULE Summary talk
SiD Calorimeter R&D Collaboration
A SiW EM Calorimeter for the Silicon Detector
detector development readout electronics interconnects bump bonding
CALICE COLLABORATION LPC Clermont LAL Orsay Samuel MANEN Julien FLEURY
Felix Sefkow CALICE/EUDET electronics meeting CERN, July 12, 2007
LCDRD ECal R&D Physics goals drive the design
SiD Electronic Concepts
A Silicon-Tungsten ECal for the SiD Concept
BESIII EMC electronics
Yasuhiro Sugimoto KEK 17 R&D status of FPCCD VTX Yasuhiro Sugimoto KEK 17
FPCCD Vertex Detector for ILC
Presentation transcript:

Victoria04 R. Frey1 Silicon/Tungsten ECal Status and Progress Ray Frey University of Oregon Victoria ALCPG Workshop July 29, 2004 Overview Current R&D  detectors  electronics  timing Si/W Timing: Talk by D. Strom in IPBI Session 7/29 13:30 Schedule Summary

Victoria04 R. Frey2 SD Si/W M. Breidenbach, D. Freytag, N. Graf, G. Haller, O. Milgrome Stanford Linear Accelerator Center R. Frey, D. Strom U. Oregon V. Radeka Brookhaven National Lab Note: The main ideas of this R&D are applicable to either a warm or cold LC.

Victoria04 R. Frey3 Concept

Victoria04 R. Frey4 Wafer and readout chip

Victoria04 R. Frey5 SiD Si/W Features “ Channel count” reduced by factor of 10 3 Compact – thin gap ~ 1mm  Moliere radius 9mm → 14 mm Cost nearly independent of transverse segmentation Power cycling – only passive cooling required Dynamic range OK Timing possible  Low capacitance  Good S/N  Correct for charge slewing/outliers Current configuration: 5 mm pixels 30 layers: 20 x 5/7 X x 10/7 X0

Victoria04 R. Frey6 Signals  <2000 e noise  Require MIPs with S/N > 7  Max. signal 2500 MIPs (5mm pixels) Capacitance  Pixels: 5.7 pF  Traces: ~0.8 pF per pixel crossing  Crosstalk: 0.8 pF/Gain x Cin < 1% Resistance  300 ohm max Power  < 40 mW/wafer  power cycling (An important LC feature!) Provide fully digitized, zero suppressed outputs of charge and time on one ASIC for every wafer. Electronics requirements

Victoria04 R. Frey7 Electronics scheme – old (~1 year ago) Dynamic range  0.1 to 2500 MIPs  Requires large Cf = 10 pF on input amplifier  Two ranges  Requires large currents in next stages  Requires small signals for ~MIPs after 1 st stage Time  Pile-up background  Exotic physics  In this version, expect ns

8 Electronics design – Present Dynamically switched C f (D. Freytag)  Much reduced power Large currents in 1 st stage only  Signals after 1st stage larger  0.1 mV → 6.4mV for MIP Time  No 4000e noise floor  Can use separate (smaller!) shaping time (  40 ns)  Readout zero-crossing discharge (time expansion) Single-channel block diagram Note: Common  50 MHz clock

Victoria04 R. Frey9 Present design gives: Noise = e/pF C in = pixel + traces + amplifier 5.7pF + 12pF + 10pF  30 pF  Noise  1000 e (MIP is e) Timing:  5 ns per MIP per hit D. Strom MC (see his talk) Simulation by D. Freytag Check with V. Radeka: “Effective shaping time is 40ns; so σ  40/(S/N)  5 ns or better.” (cf PDG) Electronics design (contd)

Victoria04 R. Frey10 Timing MC (contd) 50 ns time constant and 30-sample average Concerns & Issues: Needs testing with real electronics and detectors verification in test beam synchronization of clocks (1 part in 20) physics crosstalk For now, assume pileup window is ~5 ns (3 bx)

Victoria04 R. Frey11 Timing is good Warm detector concern: Pileup of  → hadrons over bx train 192 bx pileup (56 Hadronic Events/Train) T. Barklow Si/W ECal Timing  1 ns 3 bx pileup (5ns)

Victoria04 R. Frey12 Power Use power cycling (short LC live times) to keep average power in check 40 mW and no Cu look to be the realistic options

Victoria04 R. Frey13 Power (contd.)  40 mW per wafer (  10 3 pixels)  Passive cooling by conductance in W to module edges   T≤ 5° from center to edge  Maintains small gap & Moliere radius

Victoria04 R. Frey14 Power (contd.) Even though accelerator live fractions are 3  (warm) and 5  (cold), current electronics design parameters give small difference M. Breidenbach, SLAC ALCPG WS

Victoria04 R. Frey15 Maintaining Moliere Radius Shouldn’t need copper heat sink if present heat load estimates are correct (or close to correct). Angle = 11 mrad Compare with effective Moliere radius of 3mm at 1.7m (CALICE?): Angle = 13 mrad Capacitors may be biggest challenge

16 Components in hand Tungsten Rolled 2.5mm  1mm still OK Very good quality  < 30 μm variations 92.5% W alloy Pieces up to 1m long possible Silicon Hamamatsu detectors Design consistent with real ECal First lab measurements

17 First lab experiences

Victoria04 R. Frey18 Si/W Status and Plans Note that current design is optimized for warm, but could be optimized for cold  Would require digital pipeline  Would timing still be desirable? This year  Qualify detectors  Fabricate initial RO chip for technical prototype studies Readout limited fraction of a wafer ($) (64 of 1024 chns.) Chips probably not in hand before Jan  Electronics evaluations  Bump bonding  “Technical” test beam, summer 2005 at earliest A few layers with 1 st round detectors and chips  Plan for a full ECal module (similar to eventual ECal) Finalize thermal plans, mechanics Order next round of detectors and RO chips Earliest beam test: Summer 2006  Continue to evaluate configuration options Layering, segmentation