Carrier mobility enhancement in strained silicon germanium channels

Slides:



Advertisements
Similar presentations
MICROWAVE FET Microwave FET : operates in the microwave frequencies
Advertisements

Savas Kaya and Ahmad Al-Ahmadi School of EE&CS Russ College of Eng & Tech Search for Optimum and Scalable COSMOS.
by Alexander Glavtchev
Alain Espinosa Thin Gate Insulators Nanoscale Silicon Technology PresentersTopics Mike DuffyDouble-gate CMOS Eric DattoliStrained Silicon.
6.1 Transistor Operation 6.2 The Junction FET
Contact Modeling and Analysis of InAs HEMT Seung Hyun Park, Mehdi Salmani-Jelodar, Hong-Hyun Park, Sebastian Steiger, Michael Povoltsky, Tillmann Kubis,
Advancing Strained Silicon A O’Neill, S Olsen, University of Newcastle P-E Hellstrom, M Ostling, KTH K Lyutovich, E Kasper, University of Stuttgart.
Multisubband Monte Carlo simulations for p-MOSFETs David Esseni DIEGM, University of Udine (Italy) Many thanks to: M.De Michielis, P.Palestri, L.Lucci,
Derek Wright Monday, March 7th, 2005
Techniques of tuning the flatband voltage of metal/high-k gate-stack Name: TANG Gaofei Student ID: The Hong Kong University of Science and Technology.
Simulations of sub-100nm strained Si MOSFETs with high- gate stacks
High-K Dielectrics The Future of Silicon Transistors
School of Electrical and Electronic Engineering Queen’s University Belfast, N.Ireland Course Tutor Dr R E Hurley Northern Ireland Semiconductor Research.
Zhang Xintong 11/26/2014 Process technologies for making FinFETs.
SOI BiCMOS  an Emerging Mixed-Signal Technology Platform
SINANO WORKSHOP Munich, September 14 th R. Clerc, Q. Rafhay, M. Ferrier, G. Pananakakis, G. Ghibaudo IMEP-LAHC, INPG, Minatec, Grenoble, France.
1 Interface roughness scattering in ultra-thin GaN channels in N-polar enhancement-mode GaN MISFETs Uttam Singisetti*, Man Hoi Wong, Jim Speck, and Umesh.
J. H. Woo, Department of Electrical & Computer Engineering Texas A&M University GEOMETRIC RELIEF OF STRAINED GaAs ON NANO-SCALE GROWTH AREA.
Optional Reading: Pierret 4; Hu 3
Lecture 19 OUTLINE The MOSFET: Structure and operation
Philip Kim Department of Physics Columbia University Toward Carbon Based Electronics Beyond CMOS Devices.
Strain Effects on Bulk Ge Valence Band EEL6935: Computational Nanoelectronics Fall 2006 Andrew Koehler.
Course Overview ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May January 8, 2004.
Reliability of ZrO 2 films grown by atomic layer deposition D. Caputo, F. Irrera, S. Salerno Rome Univ. “La Sapienza”, Dept. Electronic Eng. via Eudossiana.
Silicon – On - Insulator (SOI). SOI is a very attractive technology for large volume integrated circuit production and is particularly good for low –
Advanced Process Integration
Basic MOSFET I-V characteristic(1/3) High circuit operation speed  large I ON small Subthreshold Slope (SS) Low power consumption  small I OFF (Silicon-on-insulator.
Szu-Wei Huang, C-V Lab, GIEE of NTU 1 黃 思 維 F Graduate Institute of Electronics Engineering National Taiwan University Advanced Multi-Gate Technologies.
ECE 7366 Advanced Process Integration
Advanced Process Integration
Investigation of Performance Limits of Germanium DG-MOSFET Tony Low 1, Y. T. Hou 1, M. F. Li 1,2, Chunxiang Zhu 1, Albert Chin 3, G. Samudra 1, L. Chan.
Strained Silicon MOSFET R Jie-Ying Wei Department of Electrical Engineering and Graduate Institute of Electronics Engineering National Taiwan University,
Modeling, Characterization and Design of Wide Bandgap MOSFETs for High Temperature and Power Applications UMCP: Neil Goldsman Gary Pennington(Ph.D) Stephen.
指導教授:劉致為 博士 學生:魏潔瑩 台灣大學電子工程學研究所
Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and
© 2012 Eric Pop, UIUCECE 340: Semiconductor Electronics ECE 340 Lecture 30 Metal-Semiconductor Contacts Real semiconductor devices and ICs always contain.
Numerical Boltzmann/Spherical Harmonic Device CAD Overview and Goals Overview: Further develop and apply the Numerical Boltzmann/Spherical Harmonic method.
1 BULK Si (100) VALENCE BAND STRUCTURE UNDER STRAIN Sagar Suthram Computational Nanoelectronics Class Project
Characterization of Nanoscale Dielectrics or What characterizes dielectrics needed for the 22 nm node? O. Engstrom 1, M. Lemme 2, P.Hurley 3 and S.Hall.
1 S.K. Dixit 1, 2, X.J. Zhou 3, R.D. Schrimpf 3, D.M. Fleetwood 3,4, S.T. Pantelides 4, G. Bersuker 5, R. Choi 5, and L.C. Feldman 1, 2, 4 1 Interdisciplinary.
© 2008, Reinaldo Vega UC Berkeley Top-Down Nanowire and Nano- Beam MOSFETs Reinaldo Vega EE235 April 7, 2008.
Lecture 23 OUTLINE The MOSFET (cont’d) Drain-induced effects Source/drain structure CMOS technology Reading: Pierret 19.1,19.2; Hu 6.10, 7.3 Optional Reading:
Application of Silicon-Germanium in the Fabrication of Ultra-shallow Extension Junctions of Sub-100 nm PMOSFETs P. Ranade, H. Takeuchi, W.-H. Lee, V. Subramanian,
12 nm-Gate-Length Ultrathin-Body InGaAs/InAs MOSFETs with 8
Development of an analytical mobility model for the simulation of ultra thin SOI MOSFETs. M.Alessandrini, *D.Esseni, C.Fiegna Department of Engineering.
Si/SiGe(C) Heterostructures S. H. Huang Dept. of E. E., NTU.
Novel Metal-Oxide-Semiconductor Device
SiNANO Workshop, Montreux, Sept 2006 New Generation of Virtual Substrates T. Grasby Dept. of Physics, University of Warwick.
Ultrathin InAs-Channel MOSFETs on Si Substrates Cheng-Ying Huang 1, Xinyu Bao 2, Zhiyuan Ye 2, Sanghoon Lee 1, Hanwei Chiang 1, Haoran Li 1, Varistha Chobpattana.
HO #3: ELEN Review MOS TransistorsPage 1S. Saha Long Channel MOS Transistors The theory developed for MOS capacitor (HO #2) can be directly extended.
1 Materials Beyond Silicon Materials Beyond Silicon By Uma Aghoram.
MURI Plans March 27, 2005 S. E. Thompson
III-V CMOS: Device Design & Process Flows , fax ESSDERC Workshop on Germanium and III-V MOS Technology, Sept.
CHAPTER 6: MOSFET & RELATED DEVICES CHAPTER 6: MOSFET & RELATED DEVICES Part 2.
Field Effect Transistor (FET)
ATOMIC-SCALE THEORY OF RADIATION-INDUCED PHENOMENA Sokrates T. Pantelides Department of Physics and Astronomy, Vanderbilt University, Nashville, TN and.
Outline Introduction Module work on crystal re-growth velocity study
Tunnel FETs Peng Wu Mar 30, 2017.
Contact Resistance Modeling and Analysis of HEMT Devices S. H. Park, H
1 Tyndall National Institute, Lee Maltings, Dyke Parade, Cork, Ireland
Contact Resistance Modeling in HEMT Devices
High Transconductance Surface Channel In0. 53Ga0
Nanowire Gate-All-Around (GAA) FETs
Strained Silicon MOSFET
Optional Reading: Pierret 4; Hu 3
MOS Capacitor Basics Metal SiO2
Mechanical Stress Effect on Gate Tunneling Leakage of Ge MOS Capacitor
Record Extrinsic Transconductance (2. 45 mS/μm at VDS = 0
Strained Silicon Aaron Prager EE 666 April 21, 2005.
Beyond Si MOSFETs Part 1.
Presentation transcript:

Carrier mobility enhancement in strained silicon germanium channels SiNANO Workshop Carrier mobility enhancement in strained silicon germanium channels David Leadley University of Warwick

Collaborators Warwick IMEC SINANO partners KTH, Udine, Chalmers, AMO Tim Grasby, Andy Dobbie, Chris Beer, Jon Parsons, Evan Parker, Terry Whall IMEC Gareth Nicholas, Marc Meuris, M Heyns, P Zimmerman, Matty Caymax, ++ SINANO partners KTH, Udine, Chalmers, AMO

Why is mobility still critical ? High mobility - light mass and minimal scattering ITRS – long term years By 2020, Lg=5nm, Vdd=0.7V Mobility enhancement factor of 1.04 each node Ballistic enhancement factor x2 Double gate structures – light doping

Why add Ge? ADVANTAGES BUT… Smaller bandgap Lighter hole mass Strain – splits bands and reduces scattering BUT… Native oxide no good Band-to-band tunnelling

Pseudomorphic Si0.64Ge0.36 on Si Mobility doubled

Nicholas et al, Electronics Letters 41, 20052074 Impact Ionisation Reduced impact ionisation for SiGe, despite higher mobility Nicholas et al, Electronics Letters 41, 20052074

High-k gated SiGe Deposited HfO2 Si cap – oxidises to thin SiO2 interlayer Metal HfO2 SiO2 SiGe Si Lowest EOT 12Å < 1nm

Metal gate/HfO2 gate stack development for Si(cap)/Si0.8Ge0.2 channel Interface state density (W gate) Gate leakage Warwick, AMO, Chalmers

High-k/metal gated Si0.8Ge0.2 surface p-channel devices ........enhancements beating Intel (IEDM 2004) KTH, Warwick, Chalmers, AMO

KTH, Warwick, Chalmers, AMO Effective Mobility Best SiGe (25%) devices show mobility enhancement over silicon control Mobility degradation compared to universal – interface roughness and Coulomb scattering important KTH, Warwick, Chalmers, AMO

HOT SiGe Hybrid Orientation Technology n on (100), p on (110) in Si, Yang et al. IEDM 2003 in Si, no variation with orientation for long channels, but <110> best for short channels, Saito et al VLSI 2006 50% enhanced Idsat for SiGe (110) over Si (100), 3.3x for mobility, Liu et al VLSI 2006 (110) substrate [001] [110] (100) substrate [011]

Novel p-channel/substrate orientations = 3.2 nm … enhancement beating Liu et al (VLSI Symp 2006) KTH, Warwick, Chalmers, AMO

PMOS fabricated with Lg ~125 nm Unstrained Ge pMOS High performance Ge pMOS devices using a Si-compatible process flow Zimmerman et al. IEDM 2006 4nm HfO2 2μm Ge on Si substrate 12Å EOT, TDD 107-108 cm-2 PMOS fabricated with Lg ~125 nm IMEC

Unstrained Ge Ge + anneal Si IMEC

Uniformity restored after anneal Nit spread 0.2-8x1012cm-2 affects Ids, gm and Vt Uniformity restored after anneal IMEC

Thinner EOT? Starts to leak when too thin ! Si Starts to leak when too thin ! Mobility increase with thinner HfO2 less charge trapping Ragnarsson et al. IEEE TED 53, 1657 ( 2006) IMEC

Mobility in unstrained Ge μ > 300 cm2/Vs Correction required for Rsd in short channel devices Lg<0.25μm IMEC

Investigating trapped charge Dit varies across wafer 1011 - 2x1012cm-2 Warwick, IMEC

Interface charge density Extract Dit in 3 ways at 300K: from Vt – average all energies subthreshold slope – specific energy charge pumping Interface charge density Warwick, IMEC

Mobility modelling at 4K At low T, with confinement only have one HH subband. Fit using ni and D as parameters ... Warwick, IMEC

Modelled 4K mobility ni agrees with values from Dit Annealed As grown ni agrees with values from Dit Δ decreases after anneal from 0.6nm to 0.5nm, hence μSR increases by 35% μ300K must also depend on surface roughness Warwick, IMEC

Strain tuning buffers Strained-Si by local strain now in production Si1-yGey virtual substrates for global strain y~0.2 for s-Si y~0.5 for s-Si1-xGex y~0.8 for s-Ge Need low TDD and zero pile-up

Terrace Graded VS – better than industrial quality 20% Ge XTEM TDD ≤ 105cm-2, PUD=0 10x10um2 AFM image indicating RMS roughness 1.5nm Warwick, LETI, Jeulich

State-of-the-art sSi electron mobility from TG-VSs strain 0.6 – 1.1% State of the art F. Driussi et al., ULIS 2007 Warwick, Udine, KTH

sGe global platform - 80% terrace grade TDD=3x105/cm-2, PUD = 0, RMS ≈ 8nm Warwick, FZ-Jeulich, LETI

Novel thin VS for sGe Warwick Seed layer 300nm Si0.2Ge0.8 Grade Strained Ge Si Sub Strained Si 20x20 um2 AFM image. 1.3nm RMS, fully relaxed 80% platform TDD ≈ 106/cm2 range Warwick

Positive Vt due to gate workfunction Strained Ge pMOS 150nm TiN 4nm ALD HfO2 Positive Vt due to gate workfunction ASM, Warwick, IMEC

Record Ge mobility via CMOS process Peak μ = 650 cm2/Vs G. Nicholas et al., IEEE EDL 28, 825 (2007) Warwick, IMEC

Further comments on s-Ge Full band Monte Carlo calculations, incl. BTBT, SCE etc. show best prospect for pMOS … … strained-Ge directly on Si ! Krishnamohan et al (Stanford) VLSI (2006) For s-SiGe OI, Idsat enhancement in short channels exceeds μ increase in long channel. Tsutomu Tezuka et al. VLSI (2006) nMOS still a problem for Ge … … but tensile strain Si0.1Ge0.9 on relaxed Ge promising.

Summary Addition of Ge improves mobility High-k makes Ge viable Mobility enhancements relevant for nanometre scale devices

Terrace grading – new generation of virtual substrates TDD ≈ 4 x 104 cm-2 PUD = 0 30% Warwick

LG 30% ≈105 cm-2 TDD Pile-up ≈1 cm-1

High stability sSi layers Linear Grading Relaxation (%) Terrace Grading Strained Si thickness (nm) J. Parsons et al., ULIS 2007 Warwick, FZ-Jeulich

Extended Stacking Faults Defect etch image of 20nm strained silicon layer PVTEM image of 180nm strained silicon layer J. Parsons et al., ULIS 2007 Warwick, FZ-Jeulich

Extended Stacking Faults “Perfect” dislocation Stacking fault Trailing (30°) “partial” dislocation Leading (90°) “Partial” dislocation S-Si SiGe

Stacking faults – effective misfit dislocation blockers? Defect etch images of 30nm strained silicon layer J. Parsons et al., ULIS 2007 Warwick, FZ-Jeulich

50% terrace graded (for sSi) TDD = 2x105 cm-2 PUD = 0 Warwick

≈ 20% TG - slower growth (+sSi) TDD = 4 x 104/cm2 PUD = 0

Schottky Barrier MOSFET- world best? Tunnelling f(m*) Thermionic emmision Measurement Modelling D.J. Pearman et al., IEEE Trans ED (accepted 2006) UCL, Warwick, Glasgow