Gene Expression and Control Part 2

Slides:



Advertisements
Similar presentations
Cell Division, Genetics, Molecular Biology
Advertisements

Cell Division, Genetics, Molecular Biology
Review: The flow of genetic information in the cell is DNA  RNA  protein  The sequence of codons in DNA spells out the primary structure of a polypeptide.
From DNA to Protein.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 3 Cell Structures and Their Functions Dividing Cells.
Biological Information Flow
6.3 Translation: Synthesizing Proteins from mRNA
13.3: RNA and Gene Expression
RNA Transcription.
Transcription & Translation
Translation and Transcription
1. Important Features a. DNA contains genetic template" for proteins.
The Three T’s 1. Transcription 2. Translation 3. Termination
From gene to protein. DNA:nucleotides are the monomers Proteins: amino acids are the monomers DNA:in the nucleus Proteins:synthesized in cytoplasm.
PROTEIN SYNTHESIS.
8.4 DNA Transcription 8.5 Translation
Protein Synthesis The genetic code – the sequence of nucleotides in DNA – is ultimately translated into the sequence of amino acids in proteins – gene.
17.4 – Protein Synthesis and Gene Expression gene expression – the transfer of genetic information from DNA to protein As described.
RNA carries DNA’s instructions.
Protein Translation From Gene to Protein Honors Biology Ms. Kim.
Transcription.
Transcription Transcription is the synthesis of mRNA from a section of DNA. Transcription of a gene starts from a region of DNA known as the promoter.
Making of Proteins: Transcription and Translation
Bio 1010 Dr. Bonnie A. Bain. DNA Structure and Function Part 2.
Hemophilia- Caused by a defect in a single gene cannot produce all the proteins necessary for blood clotting Depend on expensive injections of clotting.
From DNA to Protein Chapter DNA, RNA, and Gene Expression  What is genetic information and how does a cell use it?
Gene Expression and Control
Protein Synthesis. The DNA Code It is a universal code. The order of bases along the DNA strand codes for the order in which amino acids are chemically.
Chapter 13: RNA and Protein Synthesis
1 Gene expression Transcription and Translation. 2 1.Important Features: Eukaryotic cells a. DNA contains genetic template for proteins. b. DNA is found.
Chapter 14 From DNA to Protein. Byssus Marine mussel manufactures the ultimate underwater adhesive, a protein called byssus.
1 Genes and How They Work Chapter Outline Cells Use RNA to Make Protein Gene Expression Genetic Code Transcription Translation Spliced Genes – Introns.
Protein Synthesis The majority of genes are expressed as the proteins they encode. The process occurs in 2 steps: 1. Transcription (DNA---> RNA) 2. Translation.
Protein Synthesis Process that makes proteins
Transcription & Translation Transcription DNA is used to make a single strand of RNA that is complementary to the DNA base pairs. The enzyme used is.
12-3 RNA and Protein Synthesis
Chapter 7 Gene Expression and Control Part 2. Transcription: DNA to RNA  The same base-pairing rules that govern DNA replication also govern transcription.
RNA AND PROTEIN SYNTHESIS
Protein Synthesis Transcription and Translation. Protein Synthesis: Transcription Transcription is divided into 3 processes: –Initiation, Elongation and.
Transcription and Translation Topic 3.5. Assessment Statements Compare the structure of RNA and DNA Outline DNA transcription in terms of.
Chapter 10: DNA, RNA and Protein Synthesis
Gene Expression. Central Dogma Information flows from: DNA  RNA  Protein Exception: reverse transcriptase (retroviruses) RNA  DNA  RNA  Protein.
Chapter 14.  Ricin (found in castor-oil plant used in plastics, paints, cosmetics) is toxic because it inactivates ribosomes, the organelles which assemble.
Structure of DNA DNA is made up of a long chain of nucleotides
Microbial Genetics.  DNA replication is semi- conservative:  What does it mean? During cell division, each daughter cell inherits 2 DNA strands, One.
PROTEIN SYNTHESIS TRANSCRIPTION AND TRANSLATION. TRANSLATING THE GENETIC CODE ■GENES: CODED DNA INSTRUCTIONS THAT CONTROL THE PRODUCTION OF PROTEINS WITHIN.
From DNA to Proteins Chapter 13. Same two steps produce all proteins: 1) DNA is transcribed to form RNA –Occurs in the nucleus –RNA moves into cytoplasm.
From DNA to Proteins Chapter 13. Central Dogma DNA RNA Protein.
RNA, Transcription, and the Genetic Code. RNA = ribonucleic acid -Nucleic acid similar to DNA but with several differences DNARNA Number of strands21.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Overview: The Flow of Genetic Information The information content of DNA is in.
RNA and Protein Synthesis. RNA Structure n Like DNA- Nucleic acid- composed of a long chain of nucleotides (5-carbon sugar + phosphate group + 4 different.
CHAPTER 10 “HOW PROTEINS ARE MADE”. Learning Targets  I will compare the structure of RNA with that of DNA.  I will summarize the process of transcription.
8.3 DNA Replication KEY CONCEPT DNA replication copies the genetic information of a cell.
12-3 RNA and Protein Synthesis Page 300. A. Introduction 1. Chromosomes are a threadlike structure of nucleic acids and protein found in the nucleus of.
Protein Synthesis The Making of Proteins Using the Genetic Information Stored in DNA.
Ch. 11: DNA Replication, Transcription, & Translation Mrs. Geist Biology, Fall Swansboro High School.
Section 20.2 Gene Expression
PROTEIN SYNTHESIS.
Protein Synthesis.
How to Make a Protein?.
Protein Synthesis.
RNA Ribonucleic Acid.
Transcription Steps to Transcribe DNA:
Protein Synthesis The genetic code – the sequence of nucleotides in DNA – is ultimately translated into the sequence of amino acids in proteins – gene.
GENE EXPRESSION / PROTEIN SYNTHESIS
Protein Synthesis The genetic code – the sequence of nucleotides in DNA – is ultimately translated into the sequence of amino acids in proteins – gene.
DNA & Gene Expression Transcription & Translation
Protein Synthesis.
DNA and the Genome Key Area 3c Translation.
Protein Synthesis.
Presentation transcript:

Gene Expression and Control Part 2 Chapter 7 Gene Expression and Control Part 2

Transcription: DNA to RNA The same base-pairing rules that govern DNA replication also govern transcription with one exception: In RNA, A pairs with U.

Transcription: DNA to RNA During transcription, a strand of DNA (the antisense strand) acts as a template upon which a strand of RNA is assembled, using RNA nucleotides. Transcription is similar to DNA replication in that a DNA strand acts as a template for assembling another strand, in this case, of RNA. However, a difference is that only part of the DNA strand (a gene) is used as a template, not the entire DNA strand. Also, the enzyme, RNA polymerase, builds the growing RNA strand (whereas, in DNA replication, DNA polymerase builds the growing DNA strands).

The Process of Transcription Transcription occurs in the nucleus of cells. RNA polymerase and several regulatory proteins attach to a specific binding site in the DNA, called a promoter, at a transcription site close to a gene. The RNA polymerase moves along the DNA, over the gene. As it moves, the RNA polymerase unwinds the double helix so that it can “read” the base sequence of the antisense (noncoding) strand of DNA. 3. The RNA polymerase joins free RNA nucleotides into a chain in the order dictated by the DNA sequence When the RNA polymerase reaches the end of the gene, the DNA and the new mRNA strand are released.

The process of Transcription The new mRNA strand is complementary in base sequence to the DNA strand from which it was transcribed. It is essentially an RNA copy of the gene (DNA). Typically, many RNA polymerases transcribe a gene at the same time, so many new mRNA strands can be produced at the same time very quickly.

RNA Players in Translation: mRNA mRNA is a disposable copy of a gene. Its job is to carry DNA’s protein-building message to the other two types of RNA for translation. This protein building message consists of a linear sequence of of genetic “words” spelled with the genetic alphabet of A, G, C, and U. Each of these genetic “words” contains three letters and is called a codon. Each codon codes for a particular amino acid. Since there are 4 possible bases and three possible positions in a codon that each base could hold, there is a total of 64 (or 43) possible codons. These 64 codons constitute the genetic code.

The Genetic Code

The Genetic Code Since one codon follows another in the mRNA, the order of codons in the mRNA determines the order of amino acids in the polypeptide that will be formed from it. Thus the base sequence of a gene (DNA) is transcribed into the base sequence of an mRNA, which is in turn translated into an amino acid sequence in the polypeptide.

The Genetic Code There are only twenty amino acids found in proteins. So why are there 64 codons? Many amino acids are specified by more than one codon. For example, GAA and GAG both code for glutamic acid. Because of this, the genetic code is said to be a degenerate code.

The Genetic Code In addition, some codons signal the beginning and end of a protein-coding sequence. For example, in most species, the codon AUG in the mRNA signals for translation to start. AUG also codes for the amino acid methionine. Therefore, methionine is always the first amino acid to added to a new polypeptide in most species. In addition, the codons UAA, UAG, and UGA do not code for any amino acids at all. Therefore, their presence stops translation and so they are called stop codons. These codons signal the end of a protein-coding sequence in an mRNA molecule.

RNA Players in Translation: rRNA Ribosomes consist of one large subunit and one small subunit., both of which are composed of structural proteins and rRNA, ribosomal RNA. In prokaryotes, the small subunit is a 30s and the large subunit is a 50s. Together these two form the 70s prokaryotic ribosome. In eukaryotes, the small subunit is a 40s and the large subunit is a 60s. Together these two form the 80s eukaryotic ribosome. These two ribosomal subunits come together to form an intact ribosome on an mRNA molecule during translation.

RNA Players in Translation: rRNA

RNA Players in Translation: tRNA Transfer RNA’s (tRNA) deliver amino acids amino acids to ribosomes in the order specified by the mRNA. Each tRNA has two attachment sites. One is the anticodon loop, where a triplet of nucleotides that base pair with the mRNA codons are located. The second is where the amino acid binds, the amino acid specified by the codon. tRNA’s with different anticodons carry different amino acids. The tRNA carrying its appropariate amino acid is called a “loaded” tRNA.

Translation: RNA to Protein Translation occurs in the cytoplasm of the cell upon ribosomes. It has three stages: Initiation, Elongation Termination

Translation: RNA to Protein Initiation: The small ribosomal subunit binds to an mRNA molecule. The anticodon of a special tRNA called an initiator base pairs with the first AUG codon of the mRNA. Then a large ribosomal subunit joins the small subunit. met TAC AUG

Translation: RNA to Protein Elongation: The ribosome assembles a polypepide chain as it moves along the mRNA. The initiator tRNA carries the amino acid methionine so the first amino acid of the new polypeptide chain is methionine. A second tRNA brings in a second amino acid as its anticodon base pairs with the second codon in the mRNA. The ribosome then joins the two amino acids together by way of a peptide bond. This process continues as new amino acids are added to the growing polypeptide chain.

Translation: RNA to Protein Termination: When the ribosome reaches a stop codon in the mRNA, the mRNA and polypeptide detach from the ribosome and the ribosomal subunits detach from one another. Translation is now complete. The new polypeptide chain will join other proteins in the cytoplasm or it will enter the rough ER.

Translation: RNA to Protein In cells that make a lot of protein, many ribosomes may be translating the same mRNA. These ribosomes are referred to as polysomes.

Translation: RNA to Protein Not only do cells make many polypeptides from one mRNA, but they also make many copies of the same mRNA. Why? Since RNA is not a very stable molecule, it lasts only minutes before being disassembled by cytoplasmic enzymes. This fast turnover allows cells to adjust their protein synthesis rapidly in response to changing needs in a changing environment. This also explains why cells make many copies of the same mRNA molecule.