Ch 4 – Forces and the Laws of Motion. What is a force? A force is a push or pull A force causing a change in velocity –An object from rest starts moving.

Slides:



Advertisements
Similar presentations
Unit 4 FORCES AND THE LAWS OF MOTION
Advertisements

Forces and Newton’s 3 Laws of Motion Robert Strawn Compiled 10/16/11.
Force Force is a push or pull on an object The object is called the System Force on a system in motion causes change in velocity = acceleration Force is.
“ If I have seen farther than others, it is because I have stood on the shoulders of giants.” Sir Isaac Newton (1642 – 1727) Physicist.
Chapter 4 Newton’s First Law of Motion: Inertia. Newton’s First Law - Inertia In Fancy Terms: Every object continues in a state of rest, or of motion.
FORCES. Force is a vector quantity and is measured in newtons (1N) There are different type of forces: – weight – friction force – normal reaction force.
Chapter 4- Forces and Motion
Newton’s Laws.
5.3 - Forces and Equilibrium ~Background info~
Chapter 4 The Laws of Motion. Forces Usually think of a force as a push or pull Usually think of a force as a push or pull Vector quantity Vector quantity.
Forces and the Laws of Motion
Chapter 5 The Laws of Motion. Forces Usually think of a force as a push or pull Usually think of a force as a push or pull Vector quantity Vector quantity.
Forces and The Laws of Motion
Newton’s Second and Third Laws
Chapter 4 Preview Objectives Force Force Diagrams
Chapter 4 Section 1 Changes in Motion Force.
Ch. 4 Forces and Laws of Motion
Chapter 4 Forces and the Laws of Motion. Chapter Objectives Define force Identify different classes of forces Free Body Diagrams Newton’s Laws of Motion.
Chapter 4 Preview Objectives Force Force Diagrams
Chapter 4 Physics. Section 4-1 I. Forces A. Def- a push or pull; the cause of acceleration. B. Unit: Newton Def- amt. of force when acting on a 1 kg mass.
Forces and the Laws of Motion Force, Mass, and Acceleration
Nahdir Austin Honors Physics Period 2.  Force: A push or pull on an object (something that can accelerate objects.  A force is measured by a Newton.
Forces in One Dimension: Force and Motion 4.1
Force A push or pull exerted on an object..
Forces in 1 Dimension Chapter Force and Motion Force is push or pull exerted on object Forces change motion –Makes it important to know the forces.
© Houghton Mifflin Harcourt Publishing Company The student is expected to: Chapter 4 Section 1 Changes in Motion TEKS 4E develop and interpret free-body.
Forces and the Laws of Motion Chapter Changes in Motion Objectives  Describe how force affects the motion of an object  Interpret and construct.
Forces and the Laws of Motion
Unit 1 B Newton's Laws of Motion. 2 Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces.
Chapter 4 Forces and the Laws of Motion. Newton’s First Law An object at rest remains at rest, and an object in motion continues in motion with constant.
Newton’s Laws of Motion We have studied “kinematics”, or the description of motion. Now, we look at “dynamics”, the causes of motion.
Newton’s Laws of Motion What are forces? How can diagrams be used to depict and analyze the forces acting on an object? What are the effects of net force.
In order to change the motion Of an object, you must apply A force to it.
 Isaac Newton  Smart Guy  Liked Apples  Invented Calculus  Came up with 3 laws of motion  Named stuff after himself.
Chapter 4 Newton’s Laws of Motion. Newton’s First Law of Motion Every object continues in its state of rest, or of uniform motion in a straight line,
Sir Isaac Newton Newton’s Laws of Motion Newton’s 1st Law of Motion -An object at rest, will remain at rest, unless acted upon by an unbalanced.
Notes Force. Force is a push or pull exerted on some object. Forces cause changes in velocity. The SI unit for force is the Newton. 1 Newton = 1 kg m/s.
Chapter 4 Forces in One Dimension. 4.1 Force and Motion Force – A push or a pull exerted on an object. May cause a change in velocity:  Speed up  Slow.
Remember!!!! Force Vocabulary is due tomorrow
Newton’s Laws of Motion 8 th Grade Jennifer C. Brown.
Push and Pull Newton’s Laws. Newton’s First Law An object at rest remains at rest, and an object in motion continues in motion with constant velocity.
Motion & Forces.
Chapter 4 Newton’s First Law of Motion: Inertia. Newton’s First Law - Inertia In Fancy Terms: Every object continues in a state of rest, or of motion.
The Laws of Motion. Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Describes.
Ch 4 – Forces and the Laws of Motion. What is a force? A force is a push or pull A force causing a change in velocity –An object from rest starts moving.
Newton’s Second and Third Laws Chapter 4 Section 3.
Newton’s Laws AP Physics C. Basic Definitions  Inertia  property of matter that resists changes in its motion.  Mass  measurement of inertia  Force.
Forces and The Laws of Motion Newton’s Laws. Force Simply a push or a pull Forces can change the state of an object’s motion A vector quantity with magnitude.
 Force: A push or a pull Describes why objects move Defined by Sir Isaac Newton.
Dynamics!.
Forces and the Laws of Motion
© Houghton Mifflin Harcourt Publishing Company Preview Objectives Force Force Diagrams Chapter 4 Section 1 Changes in Motion.
Forces and Motion Forces in One Dimension. Force and Motion  Force  Force is a push or pull exerted on an object  Cause objects to speed up, slow down,
Instructions for using this template. Remember this is Jeopardy, so where I have written “Answer” this is the prompt the students will see, and where.
Forces and the Laws of Motion Chapter 4. Forces and the Laws of Motion 4.1 Changes in Motion –Forces are pushes or pullss can cause acceleration. are.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Chapter 4 Force A force is a push or pull exerted on an object which.
1 Physics: Chapter 4 Forces & the Laws of Motion Topics:4-1 Changes in Motion 4-2 Newton’s First Law 4-3 Newton’s Second & Third Laws 4-4 Everyday Forces.
Forces and Laws of Motion Force Force is the cause of an acceleration, or the change in an objects motion. This means that force can make an object to.
Forces & The Laws of Motion Ideas of Sir Isaac newton.
The Laws of Motion. Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Describes.
Newton’s Laws.
Motion & Forces.
Forces.
Chapter 4 Forces.
Newton’s Laws of Motion
Sir Isaac Newton
Newton’s Laws of Motion Chapters 2,3,6,7
Forces.
Forces and Newton’s Laws of Motion
Force A push or pull exerted on an object..
Presentation transcript:

Ch 4 – Forces and the Laws of Motion

What is a force? A force is a push or pull A force causing a change in velocity –An object from rest starts moving –A moving object comes to rest –A moving object changes direction The SI Unit for Force is the Newton –1 N = 1 kgm/s 2

2 Types of Forces Contact Force –Force that arises from the physical contact of two objects Field Force –Force that can exist between objects, even in the absence of physical contact between objects

Free Body Diagrams These drawings help us by isolating an object and the forces acting on it.

Newton’s First Law An object at rest remains at rest, and an object in motion continues in motion with constant velocity unless the object experiences a net external force. The tendency of an object not to accelerate is called inertia. If there is a net external force, this will cause an acceleration Net external force is the sum of all forces acting on an object

Mass is a measurement of Inertia The more mass something has, the greater tendency it will have to keep doing what it’s been doing

Equilibrium Equilibrium – the state in which there is no change in a body’s motion. The net external force acting on a body in equilibrium must be equal to zero –An object stays at rest –An object continues to move at a constant velocity Just because something is moving, DOES NOT mean a force is acting on it!

Example Problem An agriculture student is designing a support to keep a tree upright. Two wires have been attached to the tree at right angles to each other. One exerts a force of 30 N north on the tree; the other wire exerts a 40 N force due west. Determine the placement and force in the wire for a third wire so that the tree will have zero net force from the 3 wires.

30 N 40 N 50 N θ θ a 2 + b 2 = c = c 2 c = 50 N Tan -1 (40/30) = 53.1° W of N To balance the first 2 wires, we need a 3 rd wire that is of equal magnitude and opposite direction of the resultant. Therefore, the 3 rd wire must be 50 N at 53.1° E of S

Newton’s 2 nd Law The acceleration of an object is directly proportional to the net external force acting on the object and inversely proportional to the object’s mass ΣF = ma Net external force = mass x acceleration

How will the acceleration of the elephant and feather compare? This is the situation WITH air resistance. NEGLECTING air resistance, how will the acceleration of the elephant and feather compare?

Both have the same acceleration – Gravity! Although the mass of the elephant is greater, so is the force. The two proportions end up equaling the same magnitude for acceleration.

Newton’s 3 rd Law For every action there is an equal and opposite reaction If two objects interact, the magnitude of the force exerted on object 1 by object 2 is equal to the magnitude of the force simultaneously exerted on object 2 by object 1, and these two forces are opposite in direction.

Action-Reaction Pairs A pair of simultaneously equal but opposite forces resulting from the interaction of two objects The most important thing to remember is that each force acts on a different object! Ex. Hammer on nail, nail on hammer Newton’s Cradle

Ch 4.4 – Everyday Forces Weight – the magnitude of the force of gravity on an object Weight = mass x gravity Weight, unlike mass, is dependent on the force of gravity We usually designate weight on a free body diagram as F g or mg

Everyday forces, cont. Normal Force – a force exerted by one object on another in a direction perpendicular to the surface of contact The normal force is always perpendicular to the surface of contact, but not always opposite to the force of gravity FnFn FgFg FgFg FnFn

How we abbreviate forces Forces are all represented by a capital letter F –The subscript of each F tells us where the force comes from F g – Force of gravity F a – Applied Force F n – Normal Force F f (sometimes also seen as F k and F s ) – Force of friction

Fun with Friction Friction is a force that resists the motion between two objects in contact with one another.

Causes of Friction The electrons of the two surfaces in contact with one another The surfaces themselves Deformation of the surface

Why Friction…Why?! Is friction bad? Yes! If friction good? Yes!

Forms of Friction Sliding Friction Rolling Friction Friction caused by passing through fluids