SOLAR COLLECTORS AND APPLICATIONS

Slides:



Advertisements
Similar presentations
HVAC523 Heat Sources.
Advertisements

TYPES OF MECHANICAL SYSTEMS
Chapter 6 Solar Energy. Objectives State why solar energy is one of the long term options for energy independence. Describe 3 basic types of active solar.
Components of HVAC System
.. Solar thermal power plants use the sun's rays to heat a fluid, from which heat transfer systems may be used to produce steam. The steam, in turn, is.
Solar Power. Before the bell rings get out your notes and begin answering the following based on your row… Row 1- (closest to the front!)- What are the.
Chapter 6 Thermal Energy
Vapor and Combined Power Cycles
Chapter 1 VAPOR AND COMBINED POWER CYCLES
Engineer Presentation
ENERGY RENEWABLE ENERGY- Inexhaustible source of energy. Ex-solar, Hydro, Wind, Tidal& Geothermal NON-RENEWABLE ENERGY-Exhaustible with time. Ex- Fossil.
Harnessing Free Heat. The Energy Harness provides hot water using multiple heat sources, making the best use of low grade heat. It improves the efficiency.
Lesson 15 Heat Exchangers DESCRIBE the difference in the temperature profiles for counter-flow and parallel flow heat exchangers. DESCRIBE the differences.
SOLAR HEATING Solar energy can be used for Solar water heating Solar space heating Solar pool heating.
POWER PLANT.
Chapter 12: Alternative Technologies To be used with the Guide to Building Energy Efficient Homes in Kentucky.
Thermal energy Ch. 6 mostly. Transferring thermal NRG There are three mechanisms by which thermal energy is transported. 1. Convection 2. Conduction 3.
Refrigeration and Heat Pump Systems Refrigeration systems: To cool a refrigerated space or to maintain the temperature of a space below that of the surroundings.
Solar Domestic Hot Water
ISAT Module III: Building Energy Efficiency
Richard Simmons Drilling Company, Inc. 60 Drill Rig Drive, Buchanan, Virginia Telephone (540) Geothermal Heating & Cooling How it Works.
Solar thermal energy Eng. Elamir Ahmed. Definition of solar thermal energy  Solar thermal energy is a renewable energy source.  Solar thermal uses technology.
Introduction to Heat Exchangers
1. A pure commercially available silicon containing impurity atoms with concentration of the less the per m 3 and electrical resistance of 2500.
Jamil Ibrahim Establishment Building Integration Thermal Collector BITC By Engineer Khaled Jazzar WEBCO sarl June 2014.
Solar Water Heating Bob Ramlow Chapter 5: Solar Water Heating Systems Bruce Hesher Engineering Technology Brevard Community College.
Solar cooling systems.
Solar Thermal Collectors and Application
Pharos University. جامعه فاروس Faculty of Engineering
Adsorption Refrigeration System. INTRODUCTION  Adsorption refrigeration system uses adsorbent beds to adsorb and desorb a refrigerant to obtain cooling.
Heat Exchanger & Classification Prepared by: Nimesh Gajjar
Solar Energy Systems in the Eco-Village at the University of Manitoba
ARC 810: Building Climatology Department of Architecture, Federal University of Technology, Akure, Nigeria ARC 810: Building Climatology Department of.
Solar Energy: The Ultimate Renewable Resource. What is Solar Energy? Originates from nuclear fusion reactions in the sun Originates from nuclear fusion.
Lesson 8 SECOND LAW OF THERMODYNAMICS
Heating Systems.
Refrigeration Basics 101.
5.3 Essential Questions What are the first and second laws of thermodynamics? How does an internal combustion engine work? How does a refrigerator work?
Solar energy The photons take a long time to reach the surface of the sun, about 1 million years. Why? Deep in the sun, the density is very high. The photons.
REFRIGERATION SYSTEMS
CBE 150A – Transport Spring Semester 2014 Radiation.
Convection: Internal Flow ( )
Sustainable Energy Systems Engineering Peter Gevorkian Ch 8: Passive Solar Heating Technology Brevard Community College ETP1401 Bruce Hesher.
Solar Heating/Cooling/Dehumidifier Systems
1. INTRODUCTION 2. CONCENTRATED SOLAR POWER 3. PARABOLIC TROUGH 4. SOLAR PANELS 5. PHOTOVOLTAICS 6. PV SYSTEM 7. ADVANTAGES & DISADVANTAGES 8. STORAGE.
Reading Materials: Chapter 9
11 March 2013NCES Lecture Applications of Solar Energy Subject : NCES Branch : Civil (Sem – 4)
Matter Intermolecular Forces  Are the forces between neighboring molecules.
Active Solar heating Used for space and or water heating
How much makes it through the atmosphere. Why a seasonal variation? First, why do we have seasons? Earth’s axis is tilted 23.5° to the plane of its orbit.
Solar Water Heating Bob Ramlow Chapter 3: Types of Solar Water Heaters Bruce Hesher Engineering Technology Brevard Community College.
Solar Energy SOLAR ENERGY A FEW FACTS Every day the earth receives thousands of times more energy from the sun than is consumed in all other resources.
BIOMASS SUPPORTED SOLAR THERMAL HYBRID POWER PLANT
CLASSIFICATION OF HEAT EXCHANGERS
REFRIGERATION SYSTEMS Er. Gagandeep kaur Associate Prof., Electrical Engg. PTU Giani Zail Singh Campus, Bathinda. Id:
SOLAR ENERGY COLLECTORS SOLAR ENERGY COLLECTORS Non Conventional Energy Sources References : G.D RAI J K Nayak J K Nayak.
CASE STUDY : Solar Powered air conditioning as a solution to reduce environmental pollution in Tunisia.
By:- Aliza Ibrahim RRIMT,Lko.. Low-temperature Solar Heat is Ideal for Many Industrial Processes. American Solar’s heating designs meet America’s largest.
__________________________ © Cactus Moon Education, LLC. Cactus Moon Education, LLC. CACTUS MOON EDUCATION, LLC ENERGY FROM.
Energy In Buildings By Mina Greas  Lighting and Daylighting  Water Heating Systems.
ACTIVE SOLAR DESIGN ALTERNATIVE ENEGRY SOURCES.
HEAT EXCHANGER.
WHAT IS HX……??? Heat exchangers are equipment that transfer
Section 3: Using Thermal Energy
SEMINAR ON SOLAR WATER HEATER SUBMITTED TO: Mrs. Kavita Sharma SUBMITTED BY: Raghav Garg 5234/15 Electrical Engg. 6 th Semester.
5.3 notes What are the first and second laws of thermodynamics?
Solar Thermal System. Solar thermal systems convert sunlight to heat.
FBE03: Building Construction & Science
collectors, operation and layout
Presentation transcript:

SOLAR COLLECTORS AND APPLICATIONS Soteris A. Kalogirou  Higher Technical Institute Nicosia-Cyprus

Intensive program: ICT tools in PV-systems Engineering SOLAR COLLECTORS Types of collectors Stationary Sun tracking Thermal analysis of collectors Performance Applications Solar water heating Solar space heating and cooling Refrigeration Industrial process heat Desalination Solar thermal power systems TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Types of solar collectors Motion Collector type Absorber type Concentration ratio Indicative temperature range (°C) Stationary Flat plate collector (FPC) Flat 1 30-80 Evacuated tube collector (ETC) 50-200 Compound parabolic collector (CPC) Tubular 1-5 60-240 Single-axis tracking 5-15 60-300 Linear Fresnel reflector (LFR) 10-40 60-250 Parabolic trough collector (PTC) 15-45 Cylindrical trough collector (CTC) 10-50 Two-axes tracking Parabolic dish reflector (PDR) Point 100-1000 100-500 Heliostat field collector (HFC) 100-1500 150-2000 Note: Concentration ratio is defined as the aperture area divided by the receiver/absorber area of the collector. TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Modes of Tracking TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Comparison of energy absorbed for various modes of tracking Tracking mode Solar energy (kWh/m2) Percent to full tracking E SS WS Full tracking 8.43 10.60 5.70 100.0 E-W Polar 9.73 5.23 91.7 N-S Horizontal 6.22 7.85 4.91 73.8 74.0 86.2 E-W Horizontal 7.51 10.36 4.47 89.1 97.7 60.9 Note: E - Equinoxes, SS - Summer Solstice, WS - Winter Solstice TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Stationary collectors No concentration

Intensive program: ICT tools in PV-systems Engineering Flat-plate collector TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Flat-plate Collectors TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Types of flat-plate collectors Water systems Glazing Riser Absorbing plate Insulation Glazing Riser Absorbing plate Insulation A B Glazing Riser Absorbing plate Insulation D Glazing Riser Absorbing plate Insulation TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Types of flat-plate collectors Air systems Glazing Air passage Insulation E G Glazing Corrugated sheet Insulation F Glazing Air flow Metal matrix Insulation TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Schematic diagram of an evacuated tube collector TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Evacuated tube collectors TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Stationary collectors Concentrating

Flat plate collector with flat reflectors Sun rays Flat reflector Flat plate collector TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Schematic diagram of a CPC collector TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Sun tracking collectors Concentrating

Schematic of a parabolic trough collector Receiver Sun rays Tracking mechanism Parabola Receiver tube Glass cover Receiver detail TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Parabolic trough collectors TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Fresnel type parabolic trough collector Sun rays TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Linear Fresnel Reflector (LFR) Sun rays Receiver Tower Mirrors TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Schematic diagram showing interleaving of mirrors in a CLFR with reduced shading between mirrors Receiver Tower Sun rays Mirrors TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Schematic of a parabolic dish collector Parabola Sun rays Receiver Two-axes tracking mechanism TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Schematic of central receiver system TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Thermal analysis of collectors

Useful energy collected from a collector General formula: by substituting inlet fluid temperature (Ti) for the average plate temperature (Tp): Where FR is the heat removal factor TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Collector efficiency Finally, the collector efficiency can be obtained by dividing qu by (Gt Ac). Therefore: TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Overall heat loss coefficient The overall heat loss coefficient is a complicated function of the collector construction and its operating conditions and it is given by the following expression: UL=Ut+Ub+Ue (for flat plate collector) i.e., it is the heat transfer resistance from the absorber plate to the ambient air. TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Concentration The concentration ratio (C) is defined as the ratio of the aperture area to the receiver/absorber area, i.e.: For flat-plate collectors with no reflectors, C=1. For concentrators C is always greater than 1. For a single axis tracking collector the maximum possible concentration is given by: and for two-axes tracking collector: where θm is the half acceptance angle limited by the size of the sun’s disk, small scale errors and irregularities of the reflector surface and tracking errors. TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Maximum concentration For a perfect collector and tracking system Cmax depends only on the sun’s disk which has a width of 0.53° (32΄). Therefore: For single axis tracking: Cmax = 1/sin(16΄) = 216 For full tracking: Cmax = 1/sin2(16΄) = 46,747 TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Concentrating collectors The useful energy delivered from a concentrator is: Where no is the optical efficiency given by: And Af is the geometric factor given by: TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Concentrating collectors efficiency Similarly as for the flat-plate collector the heat removal factor can be used: And the collector efficiency can be obtained by dividing qu by (GbAa): Note C in the denominator TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

PERFORMANCE OF SOLAR COLLECTORS The thermal performance of the solar collector is determined by: Obtaining values of instantaneous efficiency for different combinations of incident radiation, ambient temperature, and inlet fluid temperature. Obtaining the transient thermal response characteristics of the collector (time constant). Determining the incidence angle modifier. TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

1. Collector Thermal Efficiency In reality the heat loss coefficient UL in previous equations is not constant but is a function of collector inlet and ambient temperatures. Therefore: Applying above equation we have: For flat-plate collectors: and for concentrating collectors: TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Flat plate collector efficiency Therefore for flat-plate collectors the efficiency can be written as: and if we denote co=FRτα and x=(Ti-Ta)/Gt then: TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Concentrating collector efficiency For concentrating collectors the efficiency can be written as: and if we denote ko=FRno, k1=c1/C, k2=c2/C and y=(Ti-Ta)/Gb then: TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Efficiency plots Usually the second-order terms are neglected in which case c2=0 and k2=0 (or third term in above equations is neglected). For flat plate collectors: Equations plot as a straight line on a graph of efficiency versus the heat loss parameter (Ti - Ta)/Gt The intercept (intersection of the line with the vertical efficiency axis) equals to FRτα. The slope of the line equals to -FRUL For concentrating collectors: Equations plot as a straight line on a graph of efficiency versus the heat loss parameter (Ti - Ta)/Gb The intercept equals FRno. The slope of the line equals to -FRUL/C. TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Comparison of the efficiency of various collectors at two irradiation levels, 500 and 1000 W/m2 TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Incidence Angle Modifier Flat-plate collectors The above performance equations assume that the sun is perpendicular to the plane of the collector, which rarely occurs. For the glass cover plates of a flat-plate collector, specular reflection of radiation occurs thereby reducing the (τα) product. The incident angle modifier is defined as the ratio of τα at some incident angle θ to τα at normal radiation (τα)n: For single glass cover, a single-order equation can be used with bo equal to -0.1 and b1=0 TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Efficiency equation by considering incidence angle modifier With the incidence angle modifier the collector efficiency equation can be modified as: TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Incidence Angle Modifier Concentrating collectors For off-normal incidence angles, the optical efficiency term (no) is often difficult to be described analytically because it depends on the actual concentrator geometry, concentrator optics, receiver geometry and receiver optics which may differ significantly. Fortunately, the combined effect of these parameters at different incident angles can be accounted for with the incident angle modifier. It describes how the optical efficiency of the collector changes as the incident angle changes. Thus performance equation becomes: TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Actual incidence angle modifier By using a curve fitting method (second order polynomial fit), the curve that best fits the points can be obtained: TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Concentrating Collector Acceptance Angle Another test required for the concentrating collectors is the determination of the collector acceptance angle, which characterises the effect of errors in the tracking mechanism angular orientation. This can be found with the tracking mechanism disengaged and measuring the efficiency at various out of focus angles as the sun is travelling over the collector plane. TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Collector Time Constant A last aspect of collector testing is the determination of the heat capacity of a collector in terms of a time constant. Whenever transient conditions exist, performance equations given before do not govern the thermal performance of the collector since part of the absorbed solar energy is used for heating up the collector and its components. TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Collector time constant The time constant of a collector is the time required for the fluid leaving the collector to reach 63% of its ultimate steady value after a step change in incident radiation. The collector time constant is a measure of the time required for the following relationship to apply: Tot = Collector outlet water temperature after time t (°C) Toi = Collector outlet initial water temperature (°C) Ti = Collector inlet water temperature (°C) The procedure for performing this test is to operate the collector with the fluid inlet temperature maintained at the ambient temperature. The incident solar energy is then abruptly reduced to zero by either shielding a flat-plate collector, or defocusing a concentrating one. The temperatures of the transfer fluid are continuously monitored as a function of time until above equation is satisfied. TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

SOLAR COLLECTOR APPLICATIONS

Collector efficiencies of various liquid collectors Pool heating Air conditioning POOL HEATERS EVACUATED TUBE DOUBLE-GLAZED FLAT PLATE SINGLE-GLAZED FLAT PLATE Domestic hot water Radiant space heating Convective space heating TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Solar energy applications and type of collectors used System Collector Solar water heating Thermosyphon systems Integrated collector storage Direct circulation Indirect water heating systems Air systems Passive Active FPC CPC FPC, CPC ETC Space heating and cooling Space heating and service hot water Water systems Heat pump systems Absorption systems Adsorption (desiccant) cooling Mechanical systems PDR Solar refrigeration Adsorption units Absorption units TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Solar energy applications and type of collectors used System Collector Industrial process heat Industrial air and water systems Steam generation systems Active FPC, CPC ETC PTC, LFR Solar desalination Solar stills Multi-stage flash (MSF) Multiple effect boiling (MEB) Vapour compression (VC) Passive - Solar thermal power systems Parabolic trough collector systems Parabolic tower systems Parabolic dish systems Solar furnaces Solar chemistry systems PTC HFC PDR HFC, PDR CPC, PTC, LFR TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Solar Water Heating Systems Thermosyphon systems Integrated collector storage systems Direct circulation systems Indirect water heating systems Air systems

Thermosyphon systems (passive) Thermosyphon systems heat potable water or heat transfer fluid and use natural convection to transport it from the collector to storage. The water in the collector expands becoming less dense as the sun heats it and rises through the collector into the top of the storage tank. There it is replaced by the cooler water that has sunk to the bottom of the tank, from which it flows down the collector. The circulation continuous as long as there is sunshine. Since the driving force is only a small density difference larger than normal pipe sizes must be used to minimise pipe friction. Connecting lines must be well insulated to prevent heat losses and sloped to prevent formation of air pockets which would stop circulation. TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Schematic diagram of a thermosyphon solar water heater Auxiliary Storage tank Hot water outlet Cold water inlet TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Typical thermosyphon solar water heater TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Laboratory model TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Application on inclined roof-1 TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Application on inclined roof-2 TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Application on inclined roof-3 TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Multi-residential application TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Pressurized system on inclined roof TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Integrated collector storage systems (passive) Integrated collector storage (ICS) systems use hot water storage as part of the collector, i.e., the surface of the storage tank is used also as an absorber. The main disadvantage of the ICS systems is the high thermal losses from the storage tank to the surroundings since most of the surface area of the storage tank cannot be thermally insulated as it is intentionally exposed for the absorption of solar radiation. Thermal losses are greatest during the night and overcast days with low ambient temperature. Due to these losses the water temperature drops substantially during the night especially during the winter. TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Fully developed cusp TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

The final ICS collector TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Direct circulation systems (active) In direct circulation systems a pump is used to circulate potable water from storage to the collectors when there is enough available solar energy to increase its temperature and then return the heated water to the storage tank until it is needed. As a pump circulates the water, the collectors can be mounted either above or below the storage tank. TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Direct circulation system TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Drain-down system When a freezing condition or a power failure occurs, the system drains automatically by isolating the collector array and exterior piping from the make-up water supply and draining it using the two normally open (NO) valves TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Direct or forced circulation type domestic SWH In this system only the solar panels are visible on the roof. The hot water storage tank is located indoors in a plantroom. The system is completed with piping, pump and a differential thermostat. This type of system is more appealing mainly due to architectural and aesthetic reasons but also more expensive. TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Force circulation system-1 TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Force circulation system-2 TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Swimming pool heating TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Indirect water heating systems (active) Indirect water heating systems circulate a heat transfer fluid through the closed collector loop to a heat exchanger, where its heat is transferred to the potable water. The most commonly used heat transfer fluids are water/ethylene glycol solutions, although other heat transfer fluids such as silicone oils and refrigerants can also be used. The heat exchanger can be located inside the storage tank, around the storage tank (tank mantle) or can be external. It should be noted that the collector loop is closed and therefore an expansion tank and a pressure relief valve are required. TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Indirect water heating system TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Drain-back system Circulation continues as long as usable energy is available. When the circulation pump stops the collector fluid drains by gravity to a drain-back tank. TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Large solar water heating system TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Air systems Air systems are indirect water heating systems that circulate air via ductwork through the collectors to an air-to-liquid heat exchanger. In the heat exchanger, heat is transferred to the potable water, which is also circulated through the heat exchanger and returned to the storage tank. The main advantage of the system is that air does not need to be protected from freezing or boiling, is non-corrosive, and is free. The disadvantages are that air handling equipment (ducts and fans) need more space than piping and pumps, air leaks are difficult to detect, and parasitic power consumption is generally higher than that of liquid systems. TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Air system TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Solar Space Heating and Cooling Space Heating and Service Hot Water Air systems Water systems

Solar Space Heating and Cooling The components and subsystems discussed so far may be combined to create a wide variety of building solar heating and cooling systems. Active solar space systems use collectors to heat a fluid, storage units to store solar energy until needed, and distribution equipment to provide the solar energy to the heated spaces in a controlled manner. The load can be space cooling, heating, or a combination of these two with hot water supply. In combination with conventional heating equipment solar heating provides the same levels of comfort, temperature stability, and reliability as conventional systems. TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Space Heating and Service Hot Water It is useful to consider solar systems as having five basic modes of operation, depending on the conditions that exist in the system at a particular time: If solar energy is available and heat is not needed in the building, energy gain from the collector is added to storage. If solar energy is available and heat is needed in the building, energy gain from the collector is used to supply the building need. If solar energy is not available, heat is needed in the building, and the storage unit has stored energy in it, the stored energy is used to supply the building need. If solar energy is not available, heat is needed in the building, and the storage unit has been depleted, auxiliary energy is used to supply the building need. The storage unit is fully heated, there are no loads to met, and the collector is absorbing heat-relief heat. TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Air systems A schematic of a basic solar heating system using air as the heat transfer fluid, with pebble bed storage unit and auxiliary heating source is shown in next slide. The various modes of operations are achieved by appropriate positioning of the dampers. In most air systems it is not practical to combine the modes of adding energy to and removing energy from storage at the same time. Auxiliary energy can be combined with energy supplied from collector or storage to top-up the air temperature in order to cover the building load. It is possible to bypass the collector and storage unit when auxiliary alone is being used to provide heat. TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Schematic of basic hot air system TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Detail schematic of a solar air heating system TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Water systems When used for both space and hot water production this system allows independent control of the solar collector-storage and storage-auxiliary-load loops as solar-heated water can be added to storage at the same time that hot water is removed from storage to meet building loads. Usually, a bypass is provided around the storage tank to avoid heating the storage tank, which can be of considerable size, with auxiliary energy. TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Detail schematic of a solar water heating system TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Solar Refrigeration Solar cooling can be considered for two related processes: to provide refrigeration for food and medicine preservation and to provide comfort cooling. Absorption systems are similar to vapour-compression air conditioning systems but differ in the pressurisation stage. The most usual combinations of fluids include lithium bromide-water (LiBr-H2O) where water vapour is the refrigerant and ammonia-water (NH3-H2O) systems where ammonia is the refrigerant. TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Absorption systems The pressurisation is achieved by dissolving the refrigerant in the absorbent, in the absorber section. Subsequently, the solution is pumped to a high pressure with an ordinary liquid pump. The addition of heat in the generator is used to separate the low-boiling refrigerant from the solution. In this way the refrigerant vapour is compressed without the need of large amounts of mechanical energy that the vapour-compression air conditioning systems demand. TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Basic principle of the absorption air conditioning system Condenser Evaporator Generator Heat exchanger Absorber High pressure Low pressure QC QG QE QA Cooling water Source heat Chilled water TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Industrial Process Heat

Industrial Process Heat The central system for heat supply in most factories uses hot water or steam at a medium temperature of about 150°C. Hot water or low pressure steam at medium temperatures can be used either for preheating of water (or other fluids) used for processes (washing, dyeing, etc.) or for steam generation or by direct coupling of the solar system to an individual process. In the case of water preheating, higher efficiencies are obtained due to the low input temperature to the solar system, thus low-technology collectors can work effectively. TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Possibilities of combining the solar system with the existing heat supply Conventional boiler and steam generator Process Return water Central steam supply Make-up water Solar collector applied to a particular process Solar collector used for make-up water preheating Solar collector used for steam generation Pump TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering PTCs for water heating TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Solar steam generation systems Parabolic trough collectors are frequently employed for solar steam generation because relatively high temperatures can be obtained without any serious degradation in the collector efficiency. Low temperature steam can be used in industrial applications, sterilisation, and for powering desalination evaporators. Three methods have been employed to generate steam using parabolic trough collectors: The steam-flash concept. The direct or in-situ concept. The unfired-boiler concept. TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

The steam-flash steam generation concept In steam-flash concept, a pressurised water is heated in the collector and then flashed to steam in a separate vessel. Back TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

The direct steam generation concept In direct or in-situ concept, a two phase flow is allowed in the collector receiver so that steam is generated directly. Back TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

The unfired-boiler steam generation concept In unfired-boiler concept, a heat-transfer fluid is circulated through the collector and steam is generated via heat-exchange in an unfired boiler. TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Solar Desalination Systems

Solar Desalination Systems Water is one of the most abundant resources on earth, covering three‑fourths of the planet's surface. About 97% of the earth's water is salt water in the oceans; 3% of all fresh water is in ground water, lakes and rivers, which supply most of human and animal needs. The only nearly inexhaustible sources of water are the oceans  Their main drawback, however, is their high salinity. It would be attractive to tackle the water-shortage problem with desalination of this water. TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Desalination processes Desalination can be achieved by using a number of techniques. These may be classified into the following categories: - phase-change or thermal processes; and - membrane or single-phase processes. PHASE-CHANGE PROCESSES MEMBRANE PROCESSES 1. Multi-stage flash (MSF) 2. Multiple effect boiling (MEB) 3. Vapour compression (VC) 4. Freezing 5. Humidification/Dehumidification 6. Solar stills - conventional stills - special stills - wick-type stills - multiple-wick-type stills 1. Reverse osmosis (RO) - RO without energy recovery - RO with energy recovery (ER-RO) 2. Electrodialysis (ED) TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Solar Stills TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Multiple Effect Boiling Evaporator Multiple Effect Stack (MES) type evaporator This is the most appropriate type for solar energy applications. Advantages: Stable operation between virtually zero and 100% output even when sudden changes are made (most important). Its ability to follow a varying steam supply without upset. TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Actual MEB schematic TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

A photo of an actual MEB plant TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Actual MES plant TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Solar Power systems

Intensive program: ICT tools in PV-systems Engineering Solar Thermal Power Three types of systems belong to this category: Parabolic trough collector system Central receiver system Dish collector system The process of conversion of solar to mechanical and electrical energy by thermal means is fundamentally similar to the traditional thermal processes. The solar systems differ from the ones considered so far as these operate at much higher temperatures. TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Schematic of a solar-thermal conversion system TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Typical Schematic of SEGS plants TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Parabolic Trough System TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Parabolic trough collectors TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Parabola detail TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Receiver detail TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Central receiver system TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Tower detail TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Heliostat detail TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Central receiver-1 TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Central receiver-2 TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Central receiver-3 TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Central receiver-4 TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Central receiver-5 TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Central receiver-6 TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Central receiver-7 TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Intensive program: ICT tools in PV-systems Engineering Central receiver-8 TEI Patra: 3-18 July 2006 Intensive program: ICT tools in PV-systems Engineering

Thank you for your attention, any questions please…. Solar energy should be given a chance if we want to protect the environment. We own it to our children, our grandchildren and the generations to come. Thank you for your attention,   any questions please….