إهداء الي م/علاء السيسي

Slides:



Advertisements
Similar presentations
COMPRESSION FIELD THEORY FOR SHEAR STRENGTH IN CONCRETE
Advertisements

DESIGN OF BEAM (AS PER ACI CODE)
Sample Problem 4.2 SOLUTION:
1 Analysis of Test Results 2 What we’ll have to do: Load-Deflection curve. Load Vs Strain curve for steel and concrete Find yield load (  s = 0.002)
Lecture 9 - Flexure June 20, 2003 CVEN 444.
Reinforced Concrete Flexural Members
Design of Concrete Structure I
Sample Problem 4.2 SOLUTION:
Chp.12 Cont. – Examples to design Footings
Section 3 design of post-tensioned components for flexure Developed by the pTI EDC-130 Education Committee lead author: trey Hamilton, University of.
CMGT 322 LECTURE 2. FORCES  DEFINE FORCE  DEFINE UNITS FOR FORCES  THREE IMPORTANT FACOR ABOUT FORCES: MAGNITUDE, DIRECTION, SENSE  STRESS= FORCE/AREA.
Structures and stress BaDI 1.
4 Pure Bending.
4 Pure Bending.
Stress Analysis -MDP N161 Bending of Beams Stress and Deformation
ECIV 320 Structural Analysis I Internal Loadings in Structural Members Sections 4.1 – 4.5 Study all examples.
Sample Problem 4.2 SOLUTION:
Basic Design Principles For Reinforced Concrete Beam
Lecture Goals Doubly Reinforced beams T Beams and L Beams.
10 Pure Bending.
FOUNDATION DESIGN.
Code Comparison between
1. By Dr. Attaullah Shah Swedish College of Engineering and Technology Wah Cantt. CE-401 Reinforced Concrete Design-II.
Composite Beams and Columns
Elastic Stress-Strain Relationships
Physics 121.
Chapter 4 - Flexure. Lecture Goals Structures Basic Concepts Rectangular Beams.
By Dr. Attaullah Shah Swedish College of Engineering and Technology Wah Cantt. Reinforced Concrete Design-4 Design of doubly reinforced beams.
Strengths Chapter 10 Strains. 1-1 Intro Structural materials deform under the action of forces Three kinds of deformation Increase in length called an.
MAE 343-Intermediate Mechanics of Materials QUIZ No.1 - Thursday, Aug. 26, 2004 List three possible failure modes of a machine element (5points) List the.
Strength Resistance to failure. Strength Types 1.Compressive strength 2.Tensile strength 3.Flexural strength 4.Shear strength 5.Torsional strength 6.Bond.
 2005 Pearson Education South Asia Pte Ltd 7. Transverse Shear 1 CHAPTER OBJECTIVES Develop a method for finding the shear stress in a beam having a prismatic.
12 Static Equilibrium and Elasticity Conditions for Equilibrium The Center of Gravity Some Examples of Static Equilibrium Omit sections 4, 5, 6. Stress.
1 Design of Concrete Structure I Dr. Ali Tayeh First Semester 2009 Dr. Ali Tayeh First Semester 2009.
EXAMPLE 9.3 – Part V PCI Bridge Design Manual BULB “T” (BT-72) THREE SPANS, COMPOSITE DECK LRFD SPECIFICATIONS Materials copyrighted by Precast/Prestressed.
Using 2D Elements in GSA RC Slab Design Ian Feltham – R+D, London.
Forging new generations of engineers
By Dr. Attaullah Shah Swedish College of Engineering and Technology Wah Cantt. Reinforced Concrete Design-3 Flexural Design of Beams.
Footing.
A cast-iron machine part is acted upon by a 3 kN-m couple
Chapter 4 - Flexure King Saud University University Civil Engineering Department Reinforced Concrete Design Prof. Dr. Mohammad Jamal Al-Shannag.
Beam Design Beams are designed to safely support the design loads.
UNIT-2.
Mechanics of Materials
By Dr. Attaullah Shah Swedish College of Engineering and Technology Wah Cantt. Reinforced Concrete Design-6 Shear Design of Beams.
EAS 453 Pre-stressed Concrete Design
Sample Problem 4.2 SOLUTION:
Lecture 5 - Flexure June 11, 2003 CVEN 444.
Pure Bending.
UNIT-IV SHEAR,TORSION AND BOND.
Plain & Reinforced Concrete-1 CE3601
Lecture - Design of Columns
SINGLY REINFORCED BEAM (R.C.C)
SINGLY REINFORCED SECTION. INTERNAL FORCES IN EQUILIBRIUM.
4 Pure Bending.
SINGLY REINFORCED BEAM (R.C.C)
Structure I Course Code: ARCH 208 Dr. Aeid A. Abdulrazeg
Theory of Simple Bending
Design of Reinforced Concrete
Reinforced Concrete Design-I Design of Axial members
Sample Problem 4.2 SOLUTION:
Reinforced Concrete Design-6
Reinforced Concrete Design-4 Design of doubly reinforced beams
CE-401 Reinforced Concrete Design-II
Reinforced Concrete Design-3 Flexural Design of Beams
Forging new generations of engineers
4 Pure Bending.
Structure II Course Code: ARCH 209 Dr. Aeid A. Abdulrazeg
Tutorial.
Presentation transcript:

إهداء الي م/علاء السيسي BASICS OF ACI - 318 اعداد Eng\M.Said إهداء الي م/علاء السيسي All rights reserved جميع الحقوق محفوظه للمؤلف

Strength design Method Design strength>=required strength Where: Design strength=nominal strength*reduction factor(Ø) Required strength(U)=load factor*service load(working load) بمنعي القوه التصميميه للقطاع=القوه التي يتحملها القطاع*معامل امان معامل الامان هذا لتلافي اي زياده غير متوقعه اي قصور في خواص الخرسانه وتبعا لاهميه المنشأ القوه المطلوبه=الحمل الفعلي *معامل امان(لتفادي اي زياده للحمل )

required strength: nominal strength Mu: factored moment Mn: nominal flexural moment Pu:factored axial force Pn: nominal axial strength Vu: factored shear force Tu: factored tensional moment Design strength=nominal strength*Ø ØMn=design flexural strength Øpn=design axial strength ØVn=design shear strength جدول يوضح حالات التحميل المختلفه

جدول يوضح قيمه Øحسب نوع الاجهاد المعرض له القطاع شكل يوضح تغير قيمهØبتغير القطاع من Compression contolled الي Tension Controlled

شكل الاجهاد علي الخرسانه تمثيل تقريبي لشكل الاجهاد علي الخرسانه

Where: K3fc’:Maxium stress on concrete K1K3fc’:The Average stress on concrete K2 : depth to centroid of parabolic نقطه تأثير قوي الضغط To compute nominal moment(Mn): From equilibrium of forces C=T K1*k3*fc’*b*C=AS* fsu زراع العزم C=AS*fy/(k1*k3*fc*b) Mn=T*(d-K2*C) Mn=T*(d-k2*As*fsu/(k1*k3*fc*b)) Mn=T*(d-k2/(k1*k3)As*fsu/(fc*b))

طبقا لاختبارات ويمكن ايجادها من الشكل التالي 0.55 to 0.63 تتراوح من K2/(k1*k3)قيم

يمكن تقريب شكل الاجهاد علي الخرسانه ليصبح مستطيل حتي يكون التعامل معاه ايسر 0.65 ولاتقل قيمتها عن 1000psi لكل 0.05 ثم تقل بمقدار 4000 psi حتي اجهاد ß =0.85 حيث

To compute nominal moment(Mn): From equilibrium of forces C=T 0.85*fc’*a*b=As*fy زراع العزم a=As*fy/(0.85*fc’*b) Mn=T*(d-a/2) Mn=As*fy*(d-As*fy/(0.85*fc’*b)/2) Mn=As*fy*(d-0.59*As*fy/(fc’*b))

P:reinforcement percentage b*d:Concrete Area eu: strain in concrete As=p*b*d b 0.85 fcu eu Where: C a P:reinforcement percentage Cb =ß1*cb b*d:Concrete Area d eu: strain in concrete N.A es: strain in steel Es: modulus of elasticity of steel As T To calculate p: es From equilibrium: Cb/d=eu/(eu+es) من تشابه المثلثات C=T Cb/d=eu/(eu+fy/Es) 0.85fcu*a*b=As*fy Cb/d=0.003/(0.003+fy/29000000) P*b*d=0.85*fcu*b*ß*cb بسطا ومقاما 29000000* P*d=0.85*fcu*ß1*87000/(87000+fy)*d Cb/d=87000/(87000+fy) P=0.85*fcu*ß1*87000/(87000+fy) balanced السابقه هي في حاله ان الخرسانه والحديد ينهاران مع بعض اي ان القطاع p قيمه اي ان الحديد يحدث به انهيار قبل انهيارالخرسانهTension controlled ولكن في التصميم نصمم القطاع انه pt/p<=0.75& at/a<=0.75 الكود يشترط ان Where: Pt: reinforcement percentage in Tension controlled section at: a in Tension controlled section

TO BE CONTINOUD