Welcome to Mission Analysis & Communication Workshop Tjasa (Tash) Boh Whiteman.

Slides:



Advertisements
Similar presentations
Critical Reading Strategies: Overview of Research Process
Advertisements

How to Succeed in Mathematics WOU Mathematics Department
Advanced Energy Vehicle
Have a Go at Public Speaking
Philanthropy, Values and Citizenship
The Writing Process Communication Arts.
Int 2 Computing Software Development.
What is Science anyway.
The Writing Process.
CHAPTER FIVE The Trial Balance McGraw-Hill/Irwin Accounting Fundamentals, 7/e © 2006 The McGraw-Hill Companies, Inc., All Rights Reserved Prepare.
Project Clarification: Objectives Tree BE 20–Engineering Design with Computer Applications Week 4: 15-September-2004.
SMILE Engineering Transportation Challenge Weekend 2009.
©TheMcGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 1 Introduction to Object-Oriented Programming and Software Development.
©TheMcGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 1 Introduction to Object-Oriented Programming and Software Development.
ESSAY WRITING Can be fun.
Introduction to Operation of the XL- 30 Scanning Electron Microscope Tutorial # 2 Introduction to Operation and Imaging.
Problem Solving Unit 2. Problem Solving 1. Define the problem – What is the problem? 2. Generate possible solutions – What are some things I can do to.
  2015 MATE ROV Competition Information  Events  Regional Contests  Shedd Aquarium—Midwest  Getting.
LSU 01/18/2005Project Life Cycle1 The Project Life Cycle Project Management Unit, Lecture 2.
ROVs What is an ROV? Remotely Operated Vehicle—an underwater robot
What is the ROV Competition? A competition that challenges K-12 and college students from all over the world to design and build ROVs to tackle missions.
‘How engineers create solutions to problems ’ Manuel Burton.
Miscellaneous Notes: This is a bare-bones template – make it fancier if you wish, but be sure to address at least the items listed here. Basically this.
The Writing Process Introduction Prewriting Writing Revising
The Writing Process My Favorite Things.
Project Launcher Project #3 Introduction to Transportation.
DO NOW: Sit with your Jeopardy team Sit with your Jeopardy team Quietly review your notes at your seat Quietly review your notes at your seat to prepare.
Introduction to Science: The Scientific Method
Introduction Task Process Roles Resources Evaluation Conclusion Credits.
The Scientific Method Fourth Grade.
Scientific Method.
Introduction Task Process Evaluation Conclusion Introduction Did you know that there are places on earth that to this day remain undiscovered? In fact,
What to do for a Financial year end And When to do it.
Introduction to Arrays. definitions and things to consider… This presentation is designed to give a simple demonstration of array and object visualizations.
Percussion drilling By Batch -2. Percussion drilling Cable Tool Drilling Percussion drills have been used to drill thousands of feet, though they are.
Scientific Method. Steps to Solving a Problem (The Scientific Method) 1.Identify the Problem State the problem to be solved or the question to be answered.
Advanced Higher Physics Investigation Report. Hello, and welcome to Advanced Higher Physics Investigation Presentation.
The Scientific Method involves a series of steps that are used to investigate a natural occurrence.
Developing an Algorithm
Science Fair How To Get Started… (
Sugartown Science Fair Science Fair What is Science Research? Where Can I Get My Research Project Idea ? How Do I Develop My Idea into an Experiment?
Scientific Communication
Science Question of the Day Do you think you like Science class? Why or why not?
Intermediate 2 Software Development Process. Software You should already know that any computer system is made up of hardware and software. The term hardware.
THE PROJECT LIFE CYCLE PROJECT MANAGEMENT LIFE CYCLE LSU 01/18/2005 PROJECT LIFE CYCLE 1.
The Software Development Process
Laboratory 5: Quality, Test & Data Analysis General Engineering Polytechnic University.
Bellwork 8/30/04- 8/31/04 Take a folder and write your LAST NAME then your FIRST NAME on the tab at the TOP of the folder. Place your Student Info Sheet.
Final Presentation Senior Design II MSU SeaMATE ROV Explorer Class [1]
4-2 CHAPTER 4 Engineering Communication © 2011 Cengage Learning Engineering. All Rights Reserved.
1 The Software Development Process ► Systems analysis ► Systems design ► Implementation ► Testing ► Documentation ► Evaluation ► Maintenance.
Mission Planning and Safety Workshop IET/MATE Hong Kong Underwater Robot Challenge 2016.
An Introduction to Prime Factorization by Mrs. Gress
5-1-2 Synchronous counters. Learning Objectives: At the end of this topic you will be able to: draw a block diagram showing how D-type flip-flops can.
Technological Design. Design A open-ended process There is no right answer There are many solutions.
Big6 Research and Problem Solving Skills 6 th Grade Project Creating a Travel Brochure.
Scientific Method. Steps to Solving a Problem (The Scientific Method) 1.Identify the Problem State the problem to be solved or the question to be answered.
EMPLOYEE MULTI-SKILL TRAINING PROGRAM By: JFK-103B1W1 and JFK-102B3W1.
Created By Sherri Desseau Click to begin TACOMA SCREENING INSTRUMENT FIRST GRADE.
SAFE DIE HANDLING FOR STAMPING PRODUCTION OPERATIONS UAW-GM SAFE DIE HANDLING FOR STAMPING PRODUCTION OPERATIONS Copyright © UAW-GM Health & Safety.
Comprehensive Science II Mrs. Paola González
Quick Plenaries.
What is the Scientific Method?
Understanding Communication with a Robot? Activity (60 minutes)
Vex Robotics Design System
Project Overview Introduction to Factory Automation Numerical Control
UNIT 3 – LESSON 5 Creating Functions.
Design and Implementation
Becoming an Active Reader
Software Testing and QA Theory and Practice (Chapter 5: Data Flow Testing) © Naik & Tripathy 1 Software Testing and Quality Assurance Theory and Practice.
Presentation transcript:

Welcome to Mission Analysis & Communication Workshop Tjasa (Tash) Boh Whiteman

PURPOSE -To show you how important proper communication within the team is. -Understanding your environment (competition environment, that is) -How to plan and design ROV for the mission given.

COMMUNICATION Different types: - verbal (using words) - non-verbal (using facial expressions,…) - written Can you guess which is the most important and why?

Communicating within the team -Talking (verbal communication) Do you realize the difference between talking and understanding? Let’s play a game of Chinese whispers.

How do we pass information to each other? Direct Communication - One way or Two-Way -Small chance of errors, especialy when it’s 2-way Direct Communication with multiple people - Usually one way only - Faster, but chances of errors Indirect Communication - For large groups - One way only - Fast, errors inevitable

- Listening Again, make sure you hear what was said and not what you wanted to hear. -Writing Do you know 40% of your score is your tech report and your presentation? Robin will speak on the tech report a little later.

-Minutes to meetings Have you ever heard of them? They are very useful, as you can follow what has been said, what topics discussed and who was assigned what. Also – come to meetings prepared! Have what you want to talk about ready! -Keeping a Journal Very very important – ask any researcher or developer!! Here you keep track of what you have done, and what was the result. Your thoughts, ideas also go into it.

Mission Design and Planning Established sequence (with slight variations) that brings project from idea to working robot. Very commonly used ad it takes you through the stages of development so nothing gets missed. Starting point is: 1)MISSION DEFINITION - Why exactly are you doing this?

2) MISSON STATEMENT - What do you want YOUR robot to do. 3) IDENTIFYING MISSION TASKS - Here you detail what is required to complete the mission. 4) ESTABLISHING REQUIREMENTS - Now that you know what your mission is, it’s time to look at other requirements to complete the mission sucsessfully

Examples: -Depth of water -Are you operating on the bottom of the pool, mid-surface, close to the surface? -Power Budget -Do you need any special sensors? -Do you need to pick up or move something? -Are you operating in open water or do you need to go into tight areas, like caves? - Do you need extra light?

5) IDENTIFYING CONSTRAINTS Here you identify anything that will constrain (or stop) from building ROV. - Financial - Size - Knowledge - Lack of time - Lack of tools/space - Operational (deep water, transport problems, tight maneuvering areas)

6) ESTABLISHING AND LISTING YOUR SYSTEMS Now you know what you need to do, you have an idea of the environment the ROV is going t be working in, and constraints that might stop you from doing this. Now it’s time to figure out what kind of instruments, systems and hardware your ROV will need. This includes: -Structures -Ballast -Propulsion -Control -Navigation/Sensors -Tether

7) MAKING CONCEPT DESIGN Time to start putting all of that together! Here all of your plans, ideas come together in a concept drawing/mock design. This process is also called the design review. The good thing is you can start anywhere in the process, as you will keep coming to the same section multiple times.

8)MAKING THE VEHICLE - Where to start? Usually a good place to start is with a drawing or a sketch. - Have you worked out a plan what needs do be done first? -Do you know what manufacturing process do you need to complete your ROV? - Remember, it’s better to measure twice and cut once. -Do you have the parts you need? -If some parts are very specialized, you might need to start working on them sooner.

Troubleshooting Starts on dry land. Any significant problems will show themselves here first. You will see: Are your systems running correctly? Are computer controls working? Are the sensors, screens, cameras working? If you have a problem, then systematic troubleshooting will help you solve the problems. Don’ forget to use the journal! At this stage you will also see where the potential problems could occur and either fix them on the spot of be ready to fix them later.

9) SEA TRIALS You’ve done your troubleshooting, it all works well. But real-world and lab environments are very, very different! This is where ROV gets a proper test.

10) MISSION Congratulations!! You have a fully working robot doing what it’s supposed to do! 11) EVALUATION AND REPORTS Mission is successfully completed, ROV is safely out of the water and you have more work to do. - Final Report - Descriptions - Budget summary -How did operations go? -What went wrong? Why? -How did the team work? -What can be changed?

ANTICIPATION and PREPARATION -Mistakes keep being repeated -You can anticipate problems ahead and prepare for them HOW?

This task involves the following steps:  Designing and constructing a temperature sensor prior to the competition – 15 points  Installing the temperature sensor over the vent opening – 10 points  Measuring temperature over time – up to 40 points maximum o Initial temperature measurement – up to 20 points  Ini  al temperature measurement is within 2oC of benchmark – 20 points  Init  l temperature measurement is within 4oC of benchmark – 10 points  Initi  temperature measurement is within 5oC of benchmark – 5 points o Temperature measurements over time – up to 20 points  Tempera  re measurement at 1.5 minutes – 5 points  Temperat  e measurement at 3 minutes – 5 points  Temperatu  measurement at 4.5 minutes – 5 points  Temperatur  measurement at 6 minutes – 5 points  Graphing all five data points (temperature versus time) – 10 points

Task #2: Design, construct, and install a temperature sensor over a hydrothermal vent opening and measure temperature over time. Prior to the competition, your company is required to engineer and construct a temperature sensor. During the competition, your company will be required to install your sensor over one of the hydrothermal vents at the ASHES site and obtain real-time temperature data over an extended time period. Companies will be required to report and graph temperature readings every 1.5 minutes over a 6-minute time frame. Accuracy of the temperature reading will only be judged at the initial reading.

Task #3: Replace an Acoustic Doppler Current Profiler (ADCP) on a water column mooring platform. Your company is required to remove and replace an ADCP that is located on a mooring platform suspended in the water column at the Axial Seamount site. Companies must first disconnect power to the platform, unlock the hatch, open the hatch to expose the ADCP, remove the ADCP, and replace it with a new ADCP. Once the new ADCP is installed, companies must close the hatch, lock the hatch, and reconnect power.

This task involves the following steps:  Disconnecting power to the platform – 10 points  Turning the handle to unlock the hatch – 10 points  Opening the hatch – 10 points  Removing the ADCP from the mooring platform – 10 points  Installing the new ADCP into the mooring platform – 10 points  Closing the hatch – 10 points  Turning the handle to lock the hatch – 10 points  Reconnecting power to the platform – 10 points

Mission Notes: Task #3 must be completed in order. Companies may alternate between task #3 and other tasks, but the steps of task #3 must be completed in the order listed above. Companies may skip any step of task #3, but will not receive points if they complete that step at a later time, i.e., after steps later in the list. All steps of task #3 must be completed to receive a time bonus. The mooring platform containing the ADCP is constructed from a milk crate. The mooring platform will be positively buoyant, but will be anchored in mid-water by four ropes attached to dive weights. Six manipulator/ROV attachment points (a.k.a., "grab" points) are located around the mooring platform – two screw hooks, two screw eyes and two U-bolts. Companies may use these grab points to stabilize the ROV relative to the platform as desired.

Task #4: Locate and remove biofouling from structures and instruments within the observatory. Your company is required to remove biofouling from various structures and instruments.

This task involves the following steps:  Locate five areas of biofouling and removing all biofouling organisms – 5 points each Total points = 25

Task #1: Remove the damaged riser pipe (70 points) Task #2: Cap the oil well (120 points) Task #3: Collect water samples and measure depth (80 points) Task #4: Collect biological samples (30 points) You must complete mission task #1 before attempting mission task #2. See the mission task descriptions below for more details.

Task #1: Remove the damaged riser pipe One attempt to stop the flow of oil at the Deepwater Horizon wellhead involved placing a device called a Lower Marine Riser Package (LMRP) cap onto it. Before the LMRP cap could be installed, a portion of the damaged riser pipe had to be cut and removed. The procedure is described here:

This mission task involves: Transporting and attaching a line to a U‐bolt on the damaged riser pipe. Simulating cutting the riser pipe by removing a Velcro strip. Lifting and moving the cut‐off portion of the pipe from the work area.

Task #4: Collect biological samples The impact of the oil spill on organisms that live above, on, or below the water is being investigated. The effect of the spill on some of these organisms was obvious; photos of oil‐soaked birds and sea turtles filled our TV and computer screens.

This mission task involves: Collecting one sample of each of the following organisms: sea cucumber, glass sponge, and Chaceon crab. Returning these samples to the surface.

The End! Have a good weekend!