1 © 2014 B. Wilkinson Modification date: Dec 30 2014 Sequential Logic Circuits – I Flip-Flops A sequential circuit is a logic components whose outputs.

Slides:



Advertisements
Similar presentations
Sequential Logic ENEL 111. Sequential Logic Circuits So far we have only considered circuits where the output is purely a function of the inputs With.
Advertisements

Sequential Digital Circuits Dr. Costas Kyriacou and Dr. Konstantinos Tatas.
A. Abhari CPS2131 Sequential Circuits Most digital systems like digital watches, digital phones, digital computers, digital traffic light controllers and.
1 Fundamentals of Computer Science Sequential Circuits.
ECE 331 – Digital System Design Latches and Flip-Flops (Lecture #17) The slides included herein were taken from the materials accompanying Fundamentals.
Computer Architecture CS 215
Sequential Logic Latches and Flip-Flops. Sequential Logic Circuits The output of sequential logic circuits depends on the past history of the state of.
Sequential Circuits1 DIGITAL LOGIC DESIGN by Dr. Fenghui Yao Tennessee State University Department of Computer Science Nashville, TN.
Module 12.  In Module 9, 10, 11, you have been introduced to examples of combinational logic circuits whereby the outputs are entirely dependent on the.
Sequential Logic Latches & Flip-flops
1 Sequential Circuits –Digital circuits that use memory elements as part of their operation –Characterized by feedback path –Outputs depend not only on.
Logical Circuit Design Week 11: Sequential Logic Circuits Mentor Hamiti, MSc Office ,
Dr. ClincyLecture1 Appendix A – Part 2: Logic Circuits Current State or output of the device is affected by the previous states Circuit Flip Flops New.
EKT 124 / 3 DIGITAL ELEKTRONIC 1
Sequential circuit Digital electronics is classified into combinational logic and sequential logic. In combinational circuit outpus depends only on present.
Sequential Logic Flip-Flops and Related Devices Dr. Rebhi S. Baraka Logic Design (CSCI 2301) Department of Computer Science Faculty.
ENGIN112 L20: Sequential Circuits: Flip flops October 20, 2003 ENGIN 112 Intro to Electrical and Computer Engineering Lecture 20 Sequential Circuits: Flip.
CS 151 Digital Systems Design Lecture 20 Sequential Circuits: Flip flops.
Sequential Circuits. 2 Sequential vs. Combinational Combinational Logic:  Output depends only on current input −TV channel selector (0-9) Sequential.
A clocked synchronous state-machine changes state only when a triggering edge or “tick” occurs on the clock signal. ReturnNext  “State-machine”: is a.
Revision of lecture notes written by Dr. Timothy Drysdale
So far, all of the logic circuits we have studied were basically based on the analysis and design of combinational digital circuits. The other major aspect.
Chapter 3: Sequential Logic Circuit EKT 121 / 4 ELEKTRONIK DIGIT 1.
Digital Logic Design CHAPTER 5 Sequential Logic. 2 Sequential Circuits Combinational circuits – The outputs are entirely dependent on the current inputs.
Flip Flops. Clock Signal Sequential logic circuits have memory Output is a function of input and present state Sequential circuits are synchronized by.
Lecture 10 Topics: Sequential circuits Basic concepts Clocks
Digital Computer Design Fundamental
COE 202: Digital Logic Design Sequential Circuits Part 1
Eng. Mohammed Timraz Electronics & Communication Engineer University of Palestine Faculty of Engineering and Urban planning Software Engineering Department.
Flip Flop
EE2174: Digital Logic and Lab Professor Shiyan Hu Department of Electrical and Computer Engineering Michigan Technological University CHAPTER 9 Sequential.
Company LOGO DKT 122/3 DIGITAL SYSTEM 1 WEEK #12 LATCHES & FLIP-FLOPS.
JK Flip-Flop. JK Flip-flop The most versatile of the flip-flops Has two data inputs (J and K) Do not have an undefined state like SR flip-flops – When.
1 © 2014 B. Wilkinson Modification date: Dec Sequential Logic Circuits Previously, we described the basic building blocks of sequential circuits,
Synchronous Sequential Circuits by Dr. Amin Danial Asham.
1 COMP541 Sequential Circuits Montek Singh Feb 1, 2012.
Introduction to Sequential Logic
Sequential logic circuits
Jeff Yi CS 147. Circuits  Combinatorial – Circuit that only relies on inputs.  Sequential - Circuit determined by input as well as the previous state.
1 Lecture #11 EGR 277 – Digital Logic Ch. 5 - Synchronous Sequential Logic There are two primary classifications of logic circuits: 1.Combinational logic.
1 COMP541 Sequential Circuits Montek Singh Feb 1, 2007.
Synchronous Sequential Logic A digital system has combinational logic as well as sequential logic. The latter includes storage elements. feedback path.
EKT 121 / 4 ELEKTRONIK DIGIT I
Latches and Flip-Flops
Sahar Mosleh PageCalifornia State University San Marcos 1 More on Flip Flop State Table and State Diagram.
Chapter 6 – Digital Electronics – Part 1 1.D (Data) Flip Flops 2.RS (Set-Reset) Flip Flops 3.T Flip Flops 4.JK Flip Flops 5.JKMS Flip Flops Information.
Chapter5: Synchronous Sequential Logic – Part 1
Synchronous Sequential Circuits by Dr. Amin Danial Asham.
 Flip-flops are digital logic circuits that can be in one of two states.  Flip-flops maintain their state indefinitely until an input pulse called a.
CS151 Introduction to Digital Design Chapter 5: Sequential Circuits 5-1 : Sequential Circuit Definition 5-2: Latches 1Created by: Ms.Amany AlSaleh.
Synchronous Sequential Circuits by Dr. Amin Danial Asham.
Flip Flops 3.1 Latches and Flip-Flops 3 ©Paul Godin Created September 2007 Last Edit Aug 2013.
4–1. BSCS 5 th Semester Introduction Logic diagram: a graphical representation of a circuit –Each type of gate is represented by a specific graphical.
COMBINATIONAL AND SEQUENTIAL CIRCUITS Guided By: Prof. P. B. Swadas Prepared By: BIRLA VISHVAKARMA MAHAVDYALAYA.
Chapter 3 Boolean Algebra and Digital Logic T103: Computer architecture, logic and information processing.
7. Latches and Flip-Flops Digital Computer Logic.
TOPIC : Introduction to Sequential Circuits UNIT 1: Modeling and Simulation Module 4 : Modeling Sequential Circuits.
©2010 Cengage Learning SLIDES FOR CHAPTER 11 LATCHES AND FLIP-FLOPS Click the mouse to move to the next page. Use the ESC key to exit this chapter. This.
UNIT 11 LATCHES AND FLIP-FLOPS Click the mouse to move to the next page. Use the ESC key to exit this chapter. This chapter in the book includes: Objectives.
Sequential logic circuits First Class 1Dr. AMMAR ABDUL-HAMED KHADER.
Digital Design: With an Introduction to the Verilog HDL, 5e M. Morris Mano Michael D. Ciletti Copyright ©2013 by Pearson Education, Inc. All rights reserved.
FLIP FLOPS Binary unit capable of storing one bit – 0 or 1
FIGURE 5.1 Block diagram of sequential circuit
Digital Design Lecture 9
Sequential logic circuits
FLIP-FLOPS.
Synchronous sequential
Synchronous Sequential
Flip-Flops.
Sequential Digital Circuits
Presentation transcript:

1 © 2014 B. Wilkinson Modification date: Dec Sequential Logic Circuits – I Flip-Flops A sequential circuit is a logic components whose outputs depend not only on the present logic input values but also on previous logic input and output values. Can remember past events and have a response dependent upon past events, an essential feature for designing digital systems. The basic sequential circuits with memory are the latch and the flip-flop. This material is for the sole and exclusive use of students at UNC-Charlotte. It is not to be sold, reproduced, or generally distributed.

2 Latches A “memory” logic circuit that can maintain a constant output value. Achieved by the use of feedback whereby the output is connected to the inputs in such a way to reinforce the output value.

3 Suppose an AND gate has 1’s on its inputs. This produces a 1 on the output. If this 1 is fed back to create a 1 on an input with the other inputs kept at 1, the output will maintain a 1 output: Potential memory design If the output was initially a 0, a 0 would be fed back and reinforce and maintain the 0 output. However then no way to make output a 1.

4 To force output to become either a 0 or a 1 requires a circuit such as: Set–reset memory design Reset (bar) Set (bar)

5 Latch memory design with true and complementary outputs Just the previous circuit re-drawn in the more conventional manner

6 Latch memory design with true and complementary outputs

7

8

9

10 Latch memory design with true and complementary outputs With active-high inputs Could be NOT gates but see later using NAND gates here S-R latch

11 Flip-Flops The latch design will store one binary value, but has the disadvantage that the outputs will change immediately one of the inputs changes to a 0. Often, we want the output changes to be synchronized with a clock signal. Such memory designs are usually called flip-flops. (Output flips to a 1, flops to a 0) There are several types of flip-flop.

12 S-R flip-flop (Clocked S-R latch) Essentially the same characteristics of the memory latch in that it has two inputs, named S for (set) and R for (reset). The S input when a 1 will set the output to a 1, while the R input when a 1 will reset the output to a 0. Synchronous operation requires an additional clock input and only after a specified clock transition occurs will the outputs take on the required values Before the clock transition occurs, the outputs will not change even if the S and R inputs change.

13 S-R flip-flop truth table Flip-Flop Truth Tables Flip-flops can be described by a truth table. Q + indicates the value of Q after the activating clock transition. Q - is sometimes used to indicate the value of Q before the activating clock transition. X indicates an undefined output.

14 Level triggering When the clock becomes a 1, the outputs assume their values according to S and R. Level triggered S-R flip-flop Clock Assumed that S and R will not change while clock at a 1.

15 Level triggered S-R flip flop timing

16 D-type flip-flop Stores one binary digits. The Q output simply becomes the value on the D input after the activating clock transition. Q + indicates the value of Q after the activating clock transition. Truth table of D-type flip-flop

17 Level triggered D latch design

18 Time of Output Change In positive edge triggering, the activating transition is from a logic 0 to a logic 1. In negative edge triggering, the activating transition is from a logic 1 to a logic 0. Both forms are common. Edge Triggered Designs (usual for flop –flops) The output changes on a transition of the clock signal (edge). The inputs are allowed to change at other times without affecting the output.

19 Negative edge-triggered D-type flip-flop timing

20 D-type flip-flop symbols Positive edge triggered Negative edge triggered

21 D-type flip-flop symbols with asynchronous set and reset inputs Positive edge triggered

22 Common requirements is to create a circuit whose outputs change from a 0 to a 1 or from a 1 to a 0, e.g. binary counter. J–K flip-flop provides this toggle operation in additional to being able to set the output to a 1 or reset the output to a 0. J–K flip-flop truth table Output toggles Same as S-R flip-flop Not allowed in S-R flip-flop

23 Positive edge triggered Negative edge triggered J-K flip flop symbol

24 State Diagrams Sequential circuits exist in defined states, described in a state diagram. All practical sequential circuits have a finite number of states, hence the term finite state machine for describing practical sequential circuits. A flip-flip can exist in one of two states: 1. When the output is a 0, and 2. When the output is a 1. A state change initiated by a specified change of inputs and the activating clock transition (for “synchronous” sequential circuits having clock input).

25 D-type Flip Flop State Diagram (Moore model) A state diagram of a D-type flip-flop:

26 J-K Flip Flop State Diagram (Moore model) A state diagram of a J-K flip-flop:

27 Questions Next we will explore using flip-flops to create more complex sequential circuits