Workshop: Emissies schatten vanuit de ruimte

Slides:



Advertisements
Similar presentations
KNMI Ozone Satellite Observations
Advertisements

Emissions in GEMS Data on emissions are needed for the 4 sub-systems GHG, GRG, AER and RAQ GEMS Project has dedicated tasks for emissions and surface fluxes.
Martin G. Schultz, MPI Meteorology, Hamburg GEMS proposal preparation meeting, Reading, Dec 2003 GEMS RG Global reactive gases monitoring and forecast.
The University of Reading Helen Dacre AGU Dec 2008 Boundary Layer Ventilation by Convection and Coastal Processes Helen Dacre, Sue Gray, Stephen Belcher.
Improving the View of Air Quality from Space Jim Crawford Science Directorate NASA Langley.
OMI follow-on Project Toekomstige missies gericht op troposfeer en klimaat Pieternel Levelt, KNMI.
Page 1 Tropospheric NO 2 workshop, KNMI, De Bilt NL, Sept 2007M. Van Roozendael Tropospheric NO 2 from space: retrieval issues and perspectives for.
TNO MACC-II European emissions Model-ready emission set for Jeroen Kuenen, Hugo Denier van der Gon, Antoon Visschedijk TNO, Utrecht, The Netherlands.
National Emission Inventories Developments in South Africa: Current Status and Needs P. Gwaze South African Weather Service
N emissions and the changing landscape of air quality Rob Pinder US EPA Office of Research and Development Atmospheric Modeling & Analysis Division.
A U R A Satellite Mission T E S
Indicators for policy support of atmosphere related environmental problems Robert Koelemeijer National Institute for Public Health and the Environment.
Discussion Space Research Centre. Urbanization and Industrialization: in 2008, more than half of humans live in cities UN Population Report 2007.
Observational Approaches for Climate Treaty Verification: Atmospheric observations provide the only source of independent information through which treaty.
Remote Sensing of Pollution in China Dan Yu December 10 th 2009.
Hauglustaine et al., IGAC, 19 Sep 2006 Forward and inverse modelling of atmospheric trace gas at LSCE P. Bousquet, I. Pison, P. Peylin, P. Ciais, D. Hauglustaine,
1 Use of Satellites in AQ Analysis and Emissions Improvement.
ICDC7, Boulder, September 2005 CH 4 TOTAL COLUMNS FROM SCIAMACHY – COMPARISON WITH ATMOSPHERIC MODELS P. Bergamaschi 1, C. Frankenberg 2, J.F. Meirink.
M. Van Roozendael, AMFIC Final Meeting, 23 Oct 2009, Beijing, China1 MAXDOAS measurements in Beijing M. Van Roozendael 1, K. Clémer 1, C. Fayt 1, C. Hermans.
Bas Mijling Ronald van der A AMFIC Final Meeting ● Beijing ● 23 October 2009 Results of WP 5 : Air Quality Forecasting.
1 Satellite data assimilation for air quality forecast 10/10/2006.
Air Quality Forecasting Bas Mijling Ronald van der A AMFIC Annual Meeting ● Beijing ● October 2008.
Randall Martin Space-based Constraints on Emission Inventories of Nitrogen Oxides Chris Sioris, Kelly Chance (Smithsonian Astrophysical Observatory) Lyatt.
 Expectations 2004  Achievements  Summary + Outlook AT-2 Task Group 1 Progress Thomas Wagner.
Trends and seasonal variability in tropospheric NO 2 Ronald van der A, David Peters, Henk Eskes, Folkert Boersma ESA-NRSCC DRAGON Cooperation Programme.
Overview of Techniques for Deriving Emission Inventories from Satellite Observations Frascati, November 2009 Bas Mijling Ronald van der A.
On behalf of the SCIAMACHY Team SCIAMACHY Measures Air Pollution Andreas Richter.
Randall Martin Space-based Constraints on Emissions of Nitrogen Oxides With contributions from: Chris Sioris, Kelly Chance (Smithsonian Astrophysical Observatory)
Institute of Environmental Physics and Remote Sensing IUP/IFE-UB Physics/Electrical Engineering Department 1 Measurements.
Richter, Nature (2005) GOME SCIAMACHY Reductie Europa, (deel) VS Toename (delen van) China.
NMVOC emissions NMVOC emissions estimated from HCHO GOME-2 satellite data J-F. Muller, J. Stavrakou I. De Smedt, M. Van Roozendael Belgian Institute for.
Estimating anthropogenic NOx emissions over the US using OMI satellite observations and WRF-Chem Anne Boynard Gabriele Pfister David Edwards AQAST June.
Air Quality Forecasting in China using a regional model Bas Mijling Ronald van der A Henk Eskes Hennie Kelder.
Aristeidis K. Georgoulias Contribution of Democritus University of Thrace-DUTH in AMFIC-Project Democritus University of Thrace Laboratory of Atmospheric.
Application of Satellite Observations for Timely Updates to Bottom-up Global Anthropogenic NO x Emission Inventories L.N. Lamsal 1, R.V. Martin 1,2, A.
1 Traffic Restrictions Associated with the Sino-African Summit: Reductions of NO x Detected from Space Yuxuan Wang, Michael B. McElroy, K. Folkert Boersma.
Itsushi UNO*, Youjiang HE, Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka, JAPAN Toshimasa OHARA, Jun-ichi KUROKAWA, Hiroshi.
OVERVIEW OF ATMOSPHERIC PROCESSES: Daniel J. Jacob Ozone and particulate matter (PM) with a global change perspective.
TEMIS User Workshop, Frascati, Italy October 8-9, 2007 Formaldehyde application Derivation of updated pyrogenic and biogenic hydrocarbon emissions over.
Use of space-based tropospheric NO 2 observations in regional air quality modeling Robert W. Pinder 1, Sergey L. Napelenok 1, Alice B. Gilliland 1, Randall.
NO x emission estimates from space Ronald van der A Bas Mijling Jieying Ding.
J. Ding 1,2, R. J. van der A 1, B. Mijling 1, P. F. Levelt 1,2, and N. Hao 3 [1] Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands.
Eskes, TROPOMI workshop, Mar 2008 Air Quality Forecasting in Europe Henk Eskes European ensemble forecasts: GEMS and PROMOTE Air Quality forecasts for.
TEMIS user workshop, Frascati, 8-9 October 2007 Monitoring of Transatlantic Long Range Transport of Tropospheric NO 2 – Observation and Simulation Bas.
1 Examining Seasonal Variation of Space-based Tropospheric NO 2 Columns Lok Lamsal.
GlobEmission (ITT 6721) new ESA contract starting on Oct. 11 KNMI/BIRA/FMI/TNO/VITO.
Some Applications of Satellite Remote Sensing for Air Quality: Implications for a Geostationary Constellation Randall Martin, Dalhousie and Harvard-Smithsonian.
AMFIC Progress Meeting, Barcelona, 24 June Space-nadir observations of formaldehyde, glyoxal and SO 2 columns with SCIAMACHY and GOME-2. Isabelle.
Top-Down Emissions Studies using Atmospheric Observations and Modeling Greg Frost NOAA Earth System Research Laboratory Boulder, Colorado, USA  Why top-down.
Breakout Session 1 Air Quality Jack Fishman, Randy Kawa August 18.
Willem W. Verstraeten 1, Jessica L. Neu 2, Jason E. Williams 1, Kevin W. Bowman 2, John R. Worden 2, K. Folkert Boersma 1,3 Rapid increases in tropospheric.
A Brief Overview of CO Satellite Products Originally Presented at NASA Remote Sensing Training California Air Resources Board December , 2011 ARSET.
M. De Mazière et al., TROPOMI Workshop, March 5-6, 2008 Exploitation of GOME(-2), SCIAMACHY and OMI data for monitoring atmospheric composition and transport,
GlobEmission (ITT 6721) new ESA contract starting on Oct. 11 KNMI/BIRA/FMI/TNO/VITO.
ESA :DRAGON/ EU :AMFIC Air quality Monitoring and Forecasting In China Ronald van der A, KNMI Bas Mijling, KNMI Hennie Kelder KNMI, TUE DRAGON /AMFIC project.
27-28/10/2005IGBP-QUEST Fire Fast Track Initiative Workshop Inverse Modeling of CO Emissions Results for Biomass Burning Gabrielle Pétron National Center.
Assimilated Inversion of NO x Emissions over East Asia using OMI NO 2 Column Measurements Chun Zhao and Yuhang Wang School of Earth and Atmospheric Science,
(Towards) anthropogenic CO2 emissions through inverse modelling
Use of Near-Real-Time Data for the Global System
INTERCONTINENTAL TRANSPORT: CONCENTRATIONS AND FLUXES
Harvard-Smithsonian Center for Astrophysics
Satellite Remote Sensing of Ozone-NOx-VOC Sensitivity
Space-based Diagnosis of Surface Ozone Sensitivity to Anthropogenic Emissions Randall Martin Aaron Van Donkelaar Arlene Fiore.
Diurnal Variation of Nitrogen Dioxide
OMI Tropospheric NO2 in China
Satellite data assimilation for air quality forecast
Constraining the magnitude and diurnal variation of NOx sources from space Folkert Boersma.
MEASUREMENT OF TROPOSPHERIC COMPOSITION FROM SPACE IS DIFFICULT!
Emissions What are the most sensitive parameters in emissions to improve model results (chemical species, spatio-temporal resolution, spatial distribution,
The European Commission’s science
Presentation transcript:

Workshop: Emissies schatten vanuit de ruimte Bas Mijling, Ronald van der A Emissiesymposium Lucht ● 17 juni 2014 ● Utrecht

Overzicht Meten van luchtvervuling uit de ruimte Van concentraties naar emissies NOx emissies in China en Zuid Afrika Andere emissies Conclusies en vooruitblik

Measuring air pollution from space

Atmospheric Composition (Ar) - Carbon dioxide (CO2) - Ozone (O3) - Nitrogen dioxide (NO2) - ... Samenstelling van droge lucht. N2: 78%, O2: 20.9%, Ar: 0.9%. De overige 0.1% bestaat uit sporegassen zoals CO2 (383 ppm), ozon (0-0.07 ppm), NO2 (0.02 ppm) CO2 is bekend van het broeikas-effect

The Ozone Monitoring Instrument (OMI) EOS Aura satellite

Sun-synchronous Orbit 700-800 km altitude Always same orientations towards sun:rotates eastward about 1 degree each day. Each orbit experiences about 30 minutes darkness and 72 minutes sunlight OMI local overpass time: 13:00 Daily global coverage

Measuring trace gases from space

spectral irradiance [W/m2/nm] 250 500 750 1000 1250 1500 2.5 2.0 1.5 1.0 0.5 wavelength [nm] spectral irradiance [W/m2/nm]

spectral irradiance [W/m2/nm] 250 500 750 1000 1250 1500 2.5 2.0 1.5 1.0 0.5 wavelength [nm] spectral irradiance [W/m2/nm]

ozone (O3) nitrogen dioxide (NO2) spectral irradiance [W/m2/nm] 250 500 750 1000 1250 1500 2.5 2.0 1.5 1.0 0.5 wavelength [nm] spectral irradiance [W/m2/nm] nitrogen dioxide (NO2)

www.temis.nl

www.temis.nl

Air pollution from space

Air pollution from space

Air pollution from space Shanghai Beijing Hong Kong

From concentrations to emissions

Basic tools NO2 retrievals from OMI and GOME2 CHIMERE 0.25 °×0.25°

Chemical transport model Meteorology Emission inventory Air pollution concentrations Chemical transport model

Difference between simulation and observation... simulated by model (2008) observed from space (2008) Als je satellietobservaties kunt gebruiken voor emissiebepalingen, dan sla je twee vliegen in een klap: Je kunt nauwkeuriger de luchtvervuiling simuleren (betere luchtkwaliteitsverwachtingen) Je kunt emissiebronnen controleren (houden fabrieken zich wel aan de regels) ...mainly caused by wrong emissions

How to find emissions from concentrations? ( wind

Properties of DECSO* From concentrations to emissions Takes transport into account enables high resolution (~2525 km2) Relatively fast enables operational emission estimation Emission updates by addition enables detection new hotspots enables relocation existing hotspots NO2 retrievals from OMI or GOME-2 CHIMERE 0.25° x 0.25° (A) DECSO is relatively fast: (1) Forward model run (2) Sensitivity calculation (3) Inverse with Kalman Filter (4) Emission update (B) DECSO takes transport into account, enabling a high resolution (typically in order of satellite footprint) (A) + (B): DECSO can be implemented operationally Emission results downloadable at GlobEmission website * Daily Emission estimates Constrained by Satellite Observations

NOx in China

Air pollution from space Shanghai Beijing Hong Kong

Bevolkingsdichtheid China

Change in NO2 column densities over China SCIAMACHY mean tropospheric NO2 2003 2006

China: Economic indicators Average annual income per capita, 1980-2008 China’s electricity production, 1980-2010 GDP per capita in the Netherlands: €30.174 (2006) China’s urbanization, 1980-2011 Number of vehicles in Beijing, 1998-2015 GDP in China still factor of 10 lower than in Europe. Source: China Statistical Yearbook, China Daily (17/2/09)

Shanghai 1995 Shanghai 2010

Luchtvervuiling Beijing 17 miljoen inwoners; elk jaar 500.000 nieuwe inwoners erbij 3.3 miljoen auto’s; elke dag 1000 nieuwe auto’s erbij Zware industrie dicht bij de stad Kolengestookte kachels en fornuizen

Beijing smog, januari 2013

Air quality measures No construction activities Closure or translation of polluting industry 30% reduction coal-fired power plants Ban high emission vehicles Traffic system with odd/even number plate

Emission results China original emissions new emissions New power plants in Inner Mongolia Distinct emissions along great rivers No emissions in North Korea Ship tracks

NOx emission trends Based on GOME-2 observations from 2007-2010 The results in this and following slides are based on 4 years of GOME-2 data (2007-2010). Almost all Chinese provinces show positive emission trends. Economic crisis and air quality measures cause an negative trend for Japan and South Korea. The relative emission trends in (d) show that the fasted growing provinces are also in the interior. Is the economy of the interior catching up with the richer coastal provinces? Based on GOME-2 observations from 2007-2010

The DECSO algorithm also provides information on source-receptor relations. The colored areas show the NO2 column over North and South Korea, separated by its origin. Red shows the monthly emissions (see right vertical axis) Grey shows the part of the NO2 column with an age older than 24h (which is not tracked by the DECSO algorithm). North Korea: Only a small part of NO2 is emitted locally. Most is imported from South Korea (Seoul) and China (Shenyang) South Korea: Emission and concentration factor 10 larger. NO2 concentrations mostly by local emission However: substantial part comes from sea (light blue). Intensive shipping around the peninsula!

NOx in South Africa

South Africa: Emissions characterized by few hot spots (power plants, heavy industry) Apriori emissions taken from EDGAR v4.2 Total emissions too low Location and strength of hot spots generally wrong

EDGAR v4.2 low high EDGAR v4.2 200 km

DECSO low high DECSO exp09_omi/crab2 200 km

Majuba power plant

Matimba power plant

vanadium mine

Sasol company oil from coal

Biomass burning in Mozambique

Other species

www.globemission.eu

CH2O (formaldehyde) by GOME-2

NMVOC from fire emissions

C5H8 (isoprene) emissions

PM2.5 / PM10 emissions by MODIS

NH3 by IASI NH3 total column distribution above Europe (5-yr weighted mean from morning overpass)

Conclusions & Outlook

Emission estimation from space: Standing on the shoulders of giants Inversion algorithm Chemical transport modeling Satellite retrievals

Current state Relative new technology: quality improving rapidly Already giving useful complementary information for regions with unknown or outdated emissions Urban scale Monthly emission inventories

Shortcomings Not all species can be detected from space Total emissions: difficult to infer sectorial contributions …

(Near) Future Better satellite observations Switch from scientific to operational missions TROPOMI (spatial resolution) Geostationairy (temporal resolution) Better chemical transport models Better inversion algorithms

More information www.globemission.eu www.temis.nl www.tropomi.eu www.marcopolo-panda.eu

Vragen?