Copyright Pearson Prentice Hall

Slides:



Advertisements
Similar presentations
Energy Flow Through Living Things: Photosynthesis & Cellular Respiration Chapter 8&9.
Advertisements

Cellular Respiration.
Chemical Pathways Copyright Pearson Prentice Hall.
Cellular Respiration. Harvesting Chemical Energy  So we see how energy enters food chains (via autotrophs) we can look at how organisms use that energy.
Cellular Respiration.
Chapter 9 Notes Cellular Respiration.
9-1 Chemical Pathways Photo Credit: Duomo Photography, Inc.
Cellular Respiration Chapter 9.
End Show Slide 1 of 39 Copyright Pearson Prentice Hall Biology.
Slide 1 of 39 Copyright Pearson Prentice Hall 9-1 Chemical Pathways.
Warm Up Answer the following questions in your notebook. Be sure to include the question as well. How many ATP are produced in total through cellular.
9-2 The Krebs Cycle and Electron Transport
9-2 The Krebs Cycle and Electron Transport
End Show Slide 1 of 39 Copyright Pearson Prentice Hall Biology.
Cellular Respiration. Do you like to run, bike, or swim? These all are good ways to exercise. When you exercise, your body uses oxygen to get energy from.
Slide 1 of 39 Copyright Pearson Prentice Hall 9-1 Chemical Pathways.
End Show Slide 1 of Chemical Pathways: Cellular Respiration.
Cellular Respiration.
Chemical Pathways. Cellular Respiration Cellular respiration is the process that releases ___________ by breaking down glucose and other food molecules.
End Show Slide 1 of 39 Copyright Pearson Prentice Hall 9-1 Chemical Pathways.
Ch 9 cellular respiration
End Show Slide 1 of 39 Copyright Pearson Prentice Hall 9-1 Chemical Pathways.
Chapter 9.  Cellular respiration Cellular respiration  Anaerobic respiration Anaerobic respiration  Importance of oxygen Importance of oxygen.
Cellular Respiration Unit 3: Energize Your Life Chapter 9.
Copyright Pearson Prentice Hall Biology Chapter 9.
Chapter 9.3 Cellular Respiration Mrs. Geist Biology Swansboro High School Fall
End Show Slide 1 of 39 Copyright Pearson Prentice Hall Chapter 9 pgs: gy.
Chapter 9 - Chemical Pathways. Food serves as a source of raw materials for the cells in the body and as a source of energy. Animal Plant Animal Cells.
Slide 1 of 39 Copyright Pearson Prentice Hall 9-1 Chemical Pathways.
Chapter 9 Cellular Respiration. Chemical Energy and Food Food - fats, sugars, and protein - serves as a source of chemical energy for cells The chemical.
Copyright Pearson Prentice Hall
Cell Respiration.
Copyright Pearson Prentice Hall
Copyright Pearson Prentice Hall
9.1 Cellular Respiration.
Copyright Pearson Prentice Hall
Breathing Is Only the Beginning
Cellular Respiration.
Copyright Pearson Prentice Hall
Copyright Pearson Prentice Hall
Cellular Respiration and Fermentation
Cellular Respiration Ms. Cohen Biology.
oxygen+ glucose carbon dioxide+ water +energy
Cellular Respiration Chapter 9.
Ch 9 Cellular Respiration
Chemical Pathways.
Copyright Pearson Prentice Hall
Chapter 9 Cellular Respiration.
Copyright Pearson Prentice Hall
oxygen+ glucose carbon dioxide+ water +energy
oxygen+ glucose carbon dioxide+ water +energy
oxygen+ glucose carbon dioxide+ water +energy
Chapter 9: CELLULAR RESPIRATION.
9-2 The Krebs Cycle and Electron Transport
Chapter 9 Cellular Respiration
Cellular Respiration.
Copyright Pearson Prentice Hall
Copyright Pearson Prentice Hall
Copyright Pearson Prentice Hall
Copyright Pearson Prentice Hall
Copyright Pearson Prentice Hall
9-2 The Krebs Cycle and Electron Transport
Cellular Respiration Biology 1 Ms. Duncan.
Cellular Respiration: 9-1 Chemical Pathways
Chapter 9 Cellular respiration
Copyright Pearson Prentice Hall
Copyright Pearson Prentice Hall
Cellular Respiration & Glycolysis
9-1 Making ATP Without Oxygen
Presentation transcript:

Copyright Pearson Prentice Hall Biology Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall EQ What is glycolysis? What are the results from the Krebs Cycle and Electron Transport ? Photo Credit: Duomo Photography, Inc. Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall 9-1 Chemical Pathways Food serves as a source of raw materials for the cells in the body and as a source of energy. Animal Cells Animal Mitochondrion Plant Photo Credits: left: ©Bob Gurr/DRK Photo; middle bottom: ©John Durham/Science Photo Library/Photo Researchers, Inc. ; middle top: ©Ron Boardman/Stone; right: ©Keith Porter/Photo Researchers, Inc. Plant Cells Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Both plant and animal cells carry out the final stages of cellular respiration in the mitochondria. Animal Cells Outer membrane Intermembrane space Mitochondrion Inner membrane Photo Credits: left: ©Bob Gurr/DRK Photo; middle bottom: ©John Durham/Science Photo Library/Photo Researchers, Inc. ; middle top: ©Ron Boardman/Stone; right: ©Keith Porter/Photo Researchers, Inc. Matrix Plant Cells Copyright Pearson Prentice Hall

Chemical Energy and Food One gram of the sugar glucose (C6H12O6), when burned in the presence of oxygen, releases 3811 calories of heat energy. A calorie is the amount of energy needed to raise the temperature of 1 gram of water 1 degree Celsius. Copyright Pearson Prentice Hall

Overview of Cellular Respiration Electrons carried in NADH Electrons carried in NADH and FADH2 Pyruvic acid Glucose Glycolysis Cytoplasm Cellular respiration is the process that releases energy by breaking down food molecules in the presence of oxygen. Glycolysis takes place in the cytoplasm. The Krebs cycle and electron transport take place inside the mitochondria. Mitochondrion Copyright Pearson Prentice Hall

Overview of Cellular Respiration Cellular respiration is the process that releases energy by breaking down glucose and other food molecules in the presence of oxygen. Copyright Pearson Prentice Hall

Overview of Cellular Respiration The equation for cellular respiration is: 6O2 + C6H12O6 → 6CO2 + 6H2O + Energy oxygen + glucose → carbon dioxide + water + Energy Copyright Pearson Prentice Hall

Overview of Cellular Respiration Glycolysis takes place in the cytoplasm. The Krebs cycle and electron transport take place in the mitochondria. Glycolysis Cellular respiration is the process that releases energy by breaking down food molecules in the presence of oxygen. Glycolysis takes place in the cytoplasm. The Krebs cycle and electron transport take place inside the mitochondria. Cytoplasm Mitochondrion Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Glycolysis ATP Production At the beginning of glycolysis, the cell uses up 2 molecules of ATP to start the reaction. 2 ATP 2 ADP 4 ADP 4 ATP Glycolysis is the first stage in cellular respiration. During glycolysis, glucose is broken down into 2 molecules of pyruvic acid. Glucose 2 Pyruvic acid Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Glycolysis When glycolysis is complete, 4 ATP molecules have been produced. 2 ATP 2 ADP 4 ADP 4 ATP Glucose 2 Pyruvic acid Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Glycolysis This gives the cell a net gain of 2 ATP molecules. 2 ATP 2 ADP 4 ADP 4 ATP Glucose 2 Pyruvic acid Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Glycolysis NADH Production One reaction of glycolysis removes 4 high-energy electrons, passing them to an electron carrier called NAD+. 2 ATP 2 ADP 4 ADP 4 ATP Glucose 2NAD+ 2 Pyruvic acid Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Glycolysis Each NAD+ accepts a pair of high-energy electrons and becomes an NADH molecule. 2 ATP 2 ADP 4 ADP 4 ATP Glucose 2NAD+ 2 Pyruvic acid 2 Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Glycolysis The NADH molecule holds the electrons until they can be transferred to other molecules. 2 ATP 2 ADP 4 ADP 4 ATP 2NAD+ 2 Pyruvic acid 2 To the electron transport chain Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Glycolysis The Advantages of Glycolysis The process of glycolysis is so fast that cells can produce thousands of ATP molecules in a few milliseconds. Glycolysis does not require oxygen. Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Fermentation Fermentation When oxygen is not present, glycolysis is followed by a different pathway. The combined process of this pathway and glycolysis is called fermentation. Fermentation releases energy from food molecules by producing ATP in the absence of oxygen. There are two main types of fermentation, alcoholic fermentation and lactic acid fermentation. Copyright Pearson Prentice Hall

9-2 The Krebs Cycle and Electron Transport Oxygen is required for the final steps of cellular respiration. Because the pathways of cellular respiration require oxygen, they are aerobic. During the Krebs cycle, pyruvic acid is broken down into carbon dioxide in a series of energy-extracting reactions. Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall The Krebs Cycle The energy tally from 1 molecule of pyruvic acid is 4 NADH 1 FADH2 1 ATP Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall The Totals The Totals Glycolysis produces just 2 ATP molecules per molecule of glucose. The complete breakdown of glucose through cellular respiration, including glycolysis, results in the production of 36 molecules of ATP. Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall The Totals The complete breakdown of glucose through cellular respiration, including glycolysis, results in the production of 36 molecules of ATP. Copyright Pearson Prentice Hall

Comparing Photosynthesis and Cellular Respiration The energy flows in photosynthesis and cellular respiration take place in opposite directions. Copyright Pearson Prentice Hall

Comparing Photosynthesis and Cellular Respiration On a global level, photosynthesis and cellular respiration are also opposites. Photosynthesis removes carbon dioxide from the atmosphere and cellular respiration puts it back. Photosynthesis releases oxygen into the atmosphere and cellular respiration uses that oxygen to release energy from food. Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Left Side Activity Write down the equations for photosynthesis and cellular respiration. Write down as many similarities and differences between them. Copyright Pearson Prentice Hall