Geralyn van de Krol Energy Law, Fall 2009

Slides:



Advertisements
Similar presentations
Green Impacts of Public Transportation on our Communities Help Florida Turn the Corner with Transit.
Advertisements

Approximate efficiency of an average coal-fired power plant
Energy in the U.S. - Why Wind? Financing Wind Power: The Future of Energy Institute for Professional and Executive Development Santa Fe, N.M. July 25,
Energy in the U.S. - Why Wind? Financing Wind Power: The Future of Energy Institute for Professional and Executive Development Scottsdale, Arizona May.
U.S. Russia Energy Efficiency Workshop November 17, 2010 Public Sector Energy Efficiency Financing Presenter – Amy Chiang, VP Global Energy Government.
Siemens Building Technologies 1 Renewable Energy Alterntives in The State of Florida Developers Perspective July 26, 2007 Scott Keeley Energy.
Materials Management and Climate Change An Introduction.
1 Energy Efficiency and Iowa Utilities Presentation to the Energy Policy Advisory Forum, convened by Governor-Elect Chet Culver January 4, 2007 Presented.
1Revision 5 BUSH POWER GROUP LLC The Woodlands, Texas Presentation to.
An Impact Analysis of Electrifying Florida’s Public Buses
Buckeye Wood Energy Converting Waste Wood Into Energy.
New Technology Improves Efficiency of Universitys Energy Infrastructure Frank Brewer Associate Vice President for Facilities Management University of Maryland.
Producing energy does not have to threaten the environment. In fact, its very production can reap major environmental benefits. The United States biomass.
Methane Capture and Use: Current Practices vs. Future Possibilities.
Carbon Emissions. Lesson Objectives GHGs and Global Warming Familiarize with carbon emissions Recognize sources of carbon emissions What regulatory action.
First Solar FuelSmart™: Powering Energy Security
Aspen Power, LLC Danny Vines, President October 7, 2010.
Assessing the Commercial Feasibility of Manure to Energy Systems
EnvironmentEnvironnementCanada Nusa Dua, Bali, Indonesia September 5 – 7, Part 4: LFG Utilization.
Landfill Gas By Shawn Laumann. Landfill Gas: What is it? Generated by decomposition of organic material at a landfill site Mixture of gases, mostly methane.
OHIO ENERGY POLICY PROGRESS & REVIEW UCEAO 6 th Annual Conference Securing Ohio’s Energy and Economic Future THE BEST OF TIMES, THE WORST OF TIMES: ADVANCED.
Bill Chynoweth Resource Management Partners Troy, Michigan Bill Chynoweth Resource Management Partners Troy, Michigan Renewable Energy Which way should.
From Pollutant to Electricity - The Use of Landfill Gas for Energy Energy Law Ainat Margalit May 2003.
1 The Global Methane Initiative Landfill Sector Chris Godlove.
Karen Schwalm A Simple Introduction to Methane Gas Energy Crisis Solved by Our “Gassy” Landfills In Summary The Uses of Converted Methane Background on.
Water and Wastewater Focus Wireless Sales Push 2009.
Seneca Landfill: Landfill Gas to Energy Project Presented by: Marty Siebert 2006 EGSA Spring Conference.
G LASGOW R EGIONAL L ANDFILL M ETHANE R ECOVERY TO E LECTRIFICATION P ROJECT GOVERNOR’S ENERGY CONFERENCE By Mayor Rhonda Riherd Trautman.
Recent EPA Regulation Development Presented by Bill Luthans to the 56 th Meeting of the Joint Advisory Committee Meeting for the Improvement of Air Quality.
Energy Efficiency and Arizona’s Energy Future Jeff Schlegel Southwest Energy Efficiency Project (SWEEP) April
FIFTH ANNUAL FEDERAL ENERGY WORKSHOP & DEFENSE ENERGY PARTNERSHIP FORUM | PAGE 2 Bruce Hedman, Institute for Industrial Productivity September 16, 2014.
They’re GRRRRRRREAT! Tiffany Greider Jeff Woods Alaina Pomeroy Shannon Payton Robert Jones Katherine Costello.
Connecticut’s Energy Future Removing Barriers to Promote Energy Sustainability: Public Policy and Financing December 2, 2004 Legislative Office Building.
Potential Impacts of an Advanced Energy Portfolio Standard in Pennsylvania Ryan Pletka, P.E. Black & Veatch April 12, 2004 Supported by: Heinz Endowments.
GREEN BUILDING.
Katrina Pielli U.S. Environmental Protection Agency CHP Partnership
BIOMASS Leann Baer Brooke Edwards Nisarg Joshi Josh Olzinski.
Cool Facts About Global Warming Donna Bowman Educational Outreach Coordinator SCDHEC - Bureau of Air Quality.
1 RED | the new greenwww.recycled-energy.com 1/15/08 West Virginia: Opportunities to Capture Waste Energy Presentation to Senate Committee on Economic.
-What are the assigned energy source’s? -How much energy does biomass fuels currently produce in Texas? -How important is biomass source of energy likely.
Natural Resources.
 Energy from Waste Mass burn technologies operating at extremely high temperatures Initially - no filtration for hazardous air emissions No federal or.
The Benefits of Making Energy from Waste Derek A. Porter September 20, 2007 MWMA Conference 2007 Fall Summit.
Section 2: Developing Energy Technologies
Bellringer. Alternative Energy -To achieve a future where energy use is sustainable, we must make the most of the energy sources we already have and develop.
Renewable Energy Resources
Resource Planning Georgia Power’s Diverse Plan to Meet Georgia’s Energy Needs AWMA Fall 2010 Conference October 7, 2010 Jeff Burleson Director of Resource.
Accelerated Landfill Energy Recover Technology Dr. Te-Yang Soong, PhD, PE CTI and Associates, Inc. Wixom, Michigan.
Ch. 18 Renewable resources!!
Renewable EnergySection 2 Alternative Energy To achieve a future where energy use is sustainable, we must make the most of the energy sources we already.
Hydrogen, fueling the sun today, fueling our cars tomorrow.
Page 1 Landfill Gas to Energy Clark Wiedetz General Manager Alternative Energy Program Overview Division: Energy & Environmental Solutions.
Opportunities and Barriers to Landfill Gas Energy in the U.S. Rachel Goldstein U.S. Environmental Protection Agency Landfill Methane Outreach Program (LMOP)
Renewable EnergySection 2 Section 2: Alternative Energy and Conservation Preview Bellringer Objectives Alternative Energy Tidal Power Ocean Thermal Energy.
Global Warming By: Ryan Collins and Nguyet Luong.
Session 2 Buildings and Measurements. Buildings Sector Accounts for About 40% of U.S. Energy, 72% of Electricity, 34% of Natural Gas, 38% of Carbon, 18%
Natural Gas & Propane Raqwan Griffin 3 rd hour. What is Natural Gas Natural Gas is a mixture of hydrocarbons, predominantly, methane, ethane, propane.
Green vs. Green By: Carla Torres, Yaquelin Cervantes.
About Us Overview Off Grid Technologies is a premier engineering & consulting firm that specializes in renewable energy projects in commercial, industrial,
Seite 1 Seite Seite 1 CDM in Egypt Potentials and Projects Presentation by Dr. Paul H. Suding, GTZ MENA Carbon Forum 2009 Cairo,
Billy MaloneSWANA TDIBR Landfills DeKalb County Sanitation Board Clean Cities-GA Sanitation Director.
Chapter 4 An Enduring Energy Future. Cont. キ Central electric generating stations will continue to be part of the electricity supply system in order.
Cogeneration at UC March 09, Welcome Central Utility Plant.
Waste Management Innovation, Sustainability and Customer Value Brownfields 2011 Waste to Watts: Redeveloping Closed Landfills for Renewable Energy April.
Agenda Introduction to LMOP Why LFGE Projects? LFG Applications
Objectives Describe three alternative energy technologies.
18-2 Developing Energy Technologies Objectives
Section 2: Alternative Energy and Conservation
Waste to Energy United States Perpectives
GLOBAL EFFECTS.
Presentation transcript:

Geralyn van de Krol Energy Law, Fall 2009 gmobley22@hotmail.com Landfill Gas To Energy Geralyn van de Krol Energy Law, Fall 2009 gmobley22@hotmail.com

Agenda Provide general overview of landfills in the U.S. Define landfill gas and its environmental hazards. Describe landfill gas recovery process. Explain different landfill gas to energy applications. Case study: Coast Guard Landfill Renewable Energy Center, Baltimore, Maryland.

Landfills Approximately 2000 operating landfills. In 2008, Americans produced 250 million tons of Municipal Solid Waste (MSW). Average of 4.5 lbs of MSW produced per person per day. 166 million tons (or 54%) was deposited into landfills. 2.43 lbs per person per day ended up landfill. Remainder was recycled, composted or incinerated. Source: EPA

Total MSW Generation, 2008 Source: EPA

Landfills and Energy Two ways in which landfills can generate usable energy: Waste To Energy (WTE) Burning of non-recyclable waste in order to produce energy. Approximately 107 such facilities operating in the U.S. In 2008, 31.6 millions tons of waste was incinerated in WTE programs. More than 600 worldwide. Landfill Gas to Energy Using landfill gases to generate electricity or heat. Spittleau, Vienna, Austria Source: EPA; Photo: Wien Energie

Landfill Gases When waste is landfilled, organic matter decomposes and releases landfill gas (LFG). LFG is comprised of hundreds of different gases: Methane (CH4) - 40 - 60% Carbon dioxide (CO2) - 40 - 60% Nitrogen Oxygen Ammonia Non-methane organic compounds Sulfides Hydrogen Source: EPA

Environmental Hazards: Methane Potent Greenhouse Gas (GHG) – over 20% more potent than CO2. As of 2000, U.S. responsible for 11% of world methane emissions. Landfills account for 34% of anthropogenic methane emissions in US. If uncontrolled, LFGs cause foul odors, smog, and global warming. Uncontrolled methane create explosion risk in landfills. Source: http://www.epa.gov/methanetomarkets/ Source: EPA

Existing Regulations Various laws already regulate LFGs: Off-Site Underground Migration (RCRA Subtitle D) Groundwater Contamination (RCRA Subtitle D) Odors (local and state regulations) Methane and NMOC emissions are regulated by the Clean Air Act’s New Source Performance Standards and Emissions Guidelines (NSPS/EG). Source: EPA; Waste Management

Valuable Energy Resource Fuel Equivalents of Landfill Gas (LFG with 50% methane); equivalents per 1,000 cubic feet of LFG: Natural Gas 500 cubic feet Propane 5.5 gallons Butane 4.9 gallons Gasoline 3.9 gallons No. 2 Fuel Oil 3.6 gallons Bituminous Coal 37 pounds Medium-dry Wood 83 pounds Source: EPA

Gas Recovery Source: EPA

Landfill Gas Recovery: Passive Systems Use existing landfill pressure and gas concentration to vent gas into the atmosphere or collection systems. Less efficient than active systems Depends on internal pressure within landfill Hazards of external gases migrating into landfill and causing risk of explosion. Source: EPA

Landfill Gas Recovery: Active Systems Active gas collection systems use vacuums or pumps to move gas out of the landfill. Allows the operator to better manage the gas collection system by monitoring gas production, composition and pressure. Source: EPA

Landfill Gas Recovery Vertical Well Horizontal Well Better vacuum spread throughout the landfill. Can be installed after filling is complete. Must Protect wells when placing trash over or around wells. Less interference with LF operations. Early LFG collection. Can be installed when landfill is active. Well ROI isn’t as good vertically as horizontally Horizontally bore wells are costly to build. Source: EPA

Processing and Delivery The methane gas is transported first to a gas scrubber, which extracts moisture and filters out particulates, and then to a compression facility. Finally, the gas is used to fuel turbines or engines to produce electricity. For direct-use applications, landfill gas is delivered offsite to industrial customers and used as an alternative fuel source Source: EPA

Bioreactors Current regulations try to minimize leachate and LFG, which are seen as negative byproducts. A bioreactor landfill is a sanitary landfill that uses enhanced microbiological processes to optimize LFG production. Methods include: Liquid addition and management Waste shredding PH adjustment Nutrient addition Temperature management Increasingly important as operators try to maximize potential credits. Source: EPA

Current Use First came on scene in mid to late-1970s. Notable increase in mid-1990s as efficiency and dependability increased. Currently, more than 496 LFG energy projects operating in more than 40 states. 2/3 generate electricity 1/3 direct-use projects Likely to see large increase due to: Possible cap and trade regulation. State emission portfolio standards. Source: EPA

Source: http://www.epa.gov/landfill/overview.htm Source: EPA

Gas to Energy Flaring Direct Use Electricity Generation Methane is converted to carbon dioxide, resulting in large GHG impact reduction. No energy recovery; wasted energy source. Direct Use Pipeline Quality Gas Production Electricity Generation Alternative Fuels Source: EPA

Direct Use: Medium Btu Gas Minimal processing of gas. Used to completely or partially displaces fossil fuels. Cost efficient when facility that can use LFG is less than 5 miles away. Most common applications include: Boilers Direct thermal applications Brick kilns; asphalt plants Nurseries Commercial heating Furnaces Source: http://www.energy.ca.gov/reports/2002-04-08_500-02-020F.PDF Source: EPA; CA Energy Commission

Pipeline Quality Gas Production: High Btu Gas Requires large degree of processing. Direct injection of cleaned LFG into natural gas pipelines. LFG is 40-60% methane; pipeline natural gas contains about 90% methane. LFG contains ½ Btu of natural gas. Source: http://www.energy.ca.gov/reports/2002-04-08_500-02-020F.PDF Source: EPA; CA Energy Commission

Electricity Generation More than 70% of LFG energy projects generate electricity through combustion of LFG in internal combustion engines. Other uses include: Gas turbines Microturbines Boiler/steam turbine applications Combined cycle applications Fuel Cells Cogeneration Heat and Electricity Source: EPA

Alternative Fuels Vehicle Fuels Methanol Ammonia Urea Compressed Natural Gas and Liquified Natural Gas 2007 – 12,000 vehicles worldwide; 2010 – 70,000 Methanol Removal of CO2 and vapor. Ammonia Urea Source: http://www.afdc.energy.gov/afdc/fuels/emerging_biogas_what_is.html Source: EPA; US Dept of Energy

Source: http://www.epa.gov/lmop/proj/index.htm As of July 2009, approximately 496 landfill gas (LFG) energy projects were operational in the United States. These 496 projects generate approximately 12 billion kilowatt-hours of electricity per year and deliver 277 million cubic feet per day of LFG to direct-use applications. EPA estimates that approximately 525 additional landfills present attractive opportunities for project development. Source: EPA

Environmental Benefits Prevents direct release of methane into environment. Direct GHG reductions: LFG energy project will capture estimated 60 – 90% of methane generated by landfill. When burned as a gas for heating or electricity methane is turned into water and CO2. This type of CO2 is not considered to contribute to global climate change because the carbon that was contained in the biomass would be released in equal amounts were the matter to decompose naturally. Further, CO2 is less damaging than methane is terms of global warming. Indirect GHG reductions: Use of LFG displaces the use of non-renewable resources that would be needed to produce same energy. Source: http://www.epa.gov/lmop/benefits.htm Source: EPA

Environmental Benefits In 2009, the 485 operation projects supplied: 12 billion kilowatt-hours of electricity and 85 billion cubic feet of LFG to direct-use applications annually Estimated ‘09 Annual Environmental Benefits Carbon sequestered annually by ~19,500,000 acres of pine or fir forests, or CO2 emissions from ~199,000,000 barrels of oil consumed, or Annual greenhouse gas emissions from ~15,700,000 passenger vehicles. Source: http://www.epa.gov/lmop/benefits.htm Source: EPA

Economic Benefits Landfill Owners: Revenue stream from selling LFG to direct end user or pipeline, or from sale of electricity generated to local power grid. Reduced environmental compliance costs. Renewable Energy Certificates (RECs) Tax credits Renewable Energy Bonds Public relations Source: http://www.epa.gov/lmop/benefits.htm Source: EPA

Economic Benefit: Available Financial Assistance Federal Dept of Treasury Renewable Electricity Production Tax Credit Business Energy Investment Tax Credit Dept of Energy Renewable Energy Production Incentive Energy Efficiency and Conservation Block Grant Dept of Agriculture High Energy Cost Grant States Alabama Renewable Energy Grants $75,000 construction of landfill gas projects South Carolina Biomass Energy Tax Credit Source: http://www.dsireusa.org/index.cfm?EE=0&RE=1 Source: EPA; US Dept of Energy

Economic Benefit End User Community Significant savings for businesses and organizations that choose LFG as a direct fuel source. However, infrastructure is expensive. More economically stable energy source. Positive publicity. Community Job creation – construction, design and operation. Attract businesses. Source: http://www.epa.gov/lmop/benefits.htm Source: EPA

Economic Benefits Source: EPA

Challenges To be economically viable, landfill must be located near transmission lines or direct-use facility. Should landfills that make direct sales of methane to third-party customers be regulated as a public utility? CT, FL, and WI exempt small LFG to electricity projects. Landfills must create enough gas to be cost effective. Possible release of dioxins. Source: EPA

Landfill Methane Outreach Program Created in 1994 Voluntary program created by EPA to provide assistance to organization interest in LFG recovery projects and educate the public as to lasted LFG advances and opportunities. Matches landfills and end users. Assists with preliminary technical and economic feasibility assessments. Generates positive publicity for energy projects. Source: http://www.epa.gov/landfill/overview.htm Source: EPA

Case Study: Coast Guard Landfill Renewable Energy Center, Baltimore, Maryland Source: USCG

Energy Policy Act of 2005 Energy Policy Act of 2005 Requires the President, through the Secretary of Energy, to ensure that federal agencies meet the below renewable energy consumption requirements: NLT 3% in FYs 2007-2009 NLT 5% in FYS 2010-2012 NLT 7.5% in FY 2013 and the years following Executive Order 13423 mandated that ½ of statutorily required renewable energy must come from solar, wind, geothermal, biomass fuel projects constructed after 1999. Source: USCG

Quarantine Road Landfill Under pressure by EPA to make changes because it was not meeting its air quality obligations. Initially requested bids from private parties; however, ended in litigation. Because the landfill was city owned, it could contract with state and federal agencies under different procurement rules. Source: USCG

Source: www.flickr.com/photos/tidewatermuse/2364918796/ Source: USCG

Overview Start-up on April 22, 2009 Baltimore City owned Quarantine Road Landfill; site contains approx. 10m tons of waste. Project highlights: Largest renewable energy project in Coast Guard history. Also invested in solar and wind projects. First co-generation plant in the State of Maryland. Meets the renewable energy requirements of the entire Department of Homeland Security through the year 2012. Source: USCG

Overview Recovery & Processing System at landfill Co-Generation 1 mile 16 inch pipeline from landfill to USCG Co-Generation USCG receives both steam and electricty. Four generators located in Bldg. 48 4.6 MW output 33,000 vehicles or 3,000 homes 13,000 lb/hr of 85 psig steam Interconnected w/ utility Designed for 98% up-time Source: EPA

Source: www. govenergy. com/2007/pdfs/. /Eschenbach_Finance_track_S4 Source: www.govenergy.com/2007/pdfs/.../Eschenbach_Finance_track_S4.pdf Source: USCG

Finances / Contract Overview Energy Saving Performance Contracts Allows Coast Guard to secure third-party financing as long as financing can be paid back with energy-cost savings. At the time of contract, Coast Guard was spending approximately $2 million dollars a year on electricty. Ameresco built pipeline and processing facility at no cost to USCG. $41 million dollar 15 year contract Includes $200,000 paid to City of Baltomore for gas. $15 million in capital costs. Continuing maintenance and operation. At end of 15 years, USCG own processing plant and pipeline. How long will landfill supply gas? Source: www.govenergy.com/2007/pdfs/.../Eschenbach_Finance_track_S4.pdf Source: USCG

Anticipated Benefits Reduced vulnerability to off-site power interruptions with improved energy security, constant reliable fuel source (LFG) and on-site power & steam production. Long term price stability Annual avoided utility cost of over $2M City revenue increase annually through the term. Reduced boiler plant emissions and avoidance of methane gas into the environment Source: www.govenergy.com/2007/pdfs/.../Eschenbach_Finance_track_S4.pdf Source: USCG

So Far. . . Growing pains Contractor initially was sucking out too much methane from the landfill, which ended up killing some of the microorganisms responsible for creating methane. Result: 50% of anticipated energy Source: USCG

Conclusion: Future EPA has identified 570 candidate landfills with the potential to generate 421 – 613 billion cubic feet of methane each year. Could produce 4000 megawatts of electricity. Power 3 millions homes. Remove 35.2 million cars from roads. Eliminate need for 372 million barrels of oil. 500 landfills have a gas collection system but no energy project. 95 landfills have an energy project and excess LFG available, 970 landfills do not have a gas collection system Source: EPA

Conclusions: Future Trash powered street lights Gaon Street Light – Street light with a trash can base. Methane from composted trash is used provide power to street light.