Habitat Hunted: early 1900s Partial recovery

Slides:



Advertisements
Similar presentations
Biodiversity, Species Interactions, and Population Control Chapter 5.
Advertisements

Biodiversity, Species Interactions, and Population Control Chapter 5.
Chap 5. F. Species Interactions: 1. Competition a.Intraspecific competition - same species b. Interspecific competition -diff. species same resource a.Intraspecific.
Biodiversity, Species Interactions, and Population Control
Community Ecology Mr. Clark Bethpage HS. Key Concepts  Community structure  Roles of species  Species interactions  Changes in ecosystems  Stability.
LIVING IN THE ENVIRONMENT 17 TH MILLER/SPOOLMAN Chapter 5 Biodiversity, Species Interactions, and Population Control.
LIVING IN THE ENVIRONMENT 17 TH MILLER/SPOOLMAN Chapter 5 Biodiversity, Species Interactions, and Population Control.
Chapter 5 Biodiversity, Species Interactions, and Population Control
Wyatt Wall.  The 5 types of interactions between species are: Interspecific competition: species interact to get limited resources. Predation: when a.
BIODIVERSITY, SPECIES INTERACTIONS, AND POPULATION CONTROL CHAPTER 5.
LIVING IN THE ENVIRONMENT 17 TH MILLER/SPOOLMAN Chapter 5 Biodiversity, Species Interactions, and Population Control.
Species Interaction. Questions for Today: What are the five ways species interact with each other? How does competition effect species interactions? Describe.
Succession. Ecological Succession Natural ecological restoration –Primary succession – gradual establishment of biotic communities in lifeless areas where.
Ecosystems and Communities Chapter 4. What shapes an ecosystem? Biotic and Abiotic Factors Biotic Factors  living things that affect an organism –biotic.
 Competition  Predation Symbiosis: * parasitism * mutualism *commensalism.
Chapter 7 Community Ecology. Core Case Study: Why Should We Care about the American Alligator?  Hunters wiped out population to the point of near extinction.
LIVING IN THE ENVIRONMENT 17 TH MILLER/SPOOLMAN Chapter 5 Biodiversity, Species Interactions, and Population Control.
LIVING IN THE ENVIRONMENT 17 TH MILLER/SPOOLMAN Chapter 5 Biodiversity, Species Interactions, and Population Control.
LIVING IN THE ENVIRONMENT 17 TH MILLER/SPOOLMAN Chapter 5 Biodiversity, Species Interactions, and Population Control.
LIVING IN THE ENVIRONMENT 17 TH MILLER/SPOOLMAN Chapter 5 Biodiversity, Species Interactions, and Population Control.
Biodiversity, Species Interactions, and Population Control Chapter 5.
Biodiversity, Species Interactions, and Population Control Chapter 5.
LIVING IN THE ENVIRONMENT 17 TH MILLER/SPOOLMAN Chapter 5 Biodiversity, Species Interactions, and Population Control.
Biodiversity, Species Interactions, and Population Control Chapter 5.
Biodiversity, Species Interactions, and Population Control Chapter 5.
Biodiversity, Species Interactions, and Population Control
Chapter 7 Community Ecology.
Chapter 5 Biodiversity, Species Interactions, and Population Control
Chapter 5:.
Chapter 5 Biodiversity, Species Interactions, and Population Control
Chapter 5 Biodiversity, Species Interactions, and Population Control
Population Ecology How Do species interact?
Ecology.
Biodiversity, Species Interactions, and Population Control
Chapter 5 Biodiversity, Species Interactions, and Population Control
Biodiversity, Species Interactions, and Population Control
Chapter 5 Biodiversity, Species Interactions, and Population Control
Chapter 20 Table of Contents Section 1 Species Interactions
Chapter 7 Community Ecology.
Do Now: Identify and describe the different species interactions you can remember from living environment?
Chapter 8 Community Ecology.
Exploring Environmental Science for AP®
Do Now: Identify and describe the different species interactions you can remember from living environment?
Chapter 7 Community Ecology.
Biodiversity, Species Interactions, and Population Control
Ecology: Community Interactions
Chapter 5 Biodiversity, Species Interactions, and Population Control
Community Ecology.
5-3 How Do Communities and Ecosystems Respond to Changing Environmental Conditions? Concept 5-3 The structure and species composition of communities and.
5-3 How Do Communities and Ecosystems Respond to Changing Environmental Conditions? Concept 5-3 The structure and species composition of communities and.
Chapter 7 Community Ecology.
Organization of Life & Symbiosis
Chapter 7 Community Ecology.
BIODIVERSITY, SPECIES INTERACTIONS & POPULATION CONTROL
Chapter 5 Biodiversity, Species Interactions, and Population Control
Biodiversity, Species Interactions, and Population Control
Biodiversity, Species Interaction, and Population Control
Biodiversity, Species Interactions, and Population Control
Biodiversity & Species Interactions
Chapter 5 Biodiversity, Species Interactions, and Population Control
Chapter 7 Community Ecology.
Biodiversity, Species Interactions, and Population Control
Community Ecology Chapter 4b
Chapter 7 Community Ecology.
Biodiversity, Species Interactions, and Population Control
Competitive Exclusion & Resource Petitioning
ENVIRONMENTAL SCIENCE
Chapter 5 Biodiversity, Species Interactions, and Population Control
What Shapes an Ecosystem? Ch. 4-2
Presentation transcript:

Core Case Study: Southern Sea Otters: Are They Back from the Brink of Extinction? Habitat Hunted: early 1900s Partial recovery Why care about sea otters? Ethics Tourism dollars Keystone species

Southern Sea Otter Figure 5.1: An endangered southern sea otter in Monterey Bay, California (USA), uses a stone to crack the shell of a clam (left). It lives in a giant kelp bed (right). Scientific studies indicate that the otters act as a keystone species in a kelp forest system by helping to control the populations of sea urchins and other kelp-eating species. Fig. 5-1a, p. 104

How Do Species Interact? Five types of species interactions—competition, predation, parasitism, mutualism, and commensalism—affect the resource use and population sizes of the species in an ecosystem.

Species Interact in Five Major Ways Interspecific Competition Predation Parasitism Mutualism Commensalism

Most Species Compete with One Another for Certain Resources For limited resources Ecological niche for exploiting resources Some niches overlap

Some Species Evolve Ways to Share Resources Resource partitioning Using only parts of resource Using at different times Using in different ways

Resource Partitioning Among Warblers Figure 5.2: Sharing the wealth: This diagram illustrates resource partitioning among five species of insect-eating warblers in the spruce forests of the U.S. state of Maine. Each species minimizes competition with the others for food by spending at least half its feeding time in a distinct portion (yellow highlighted areas) of the spruce trees, and by consuming somewhat different insect species. (After R. H. MacArthur, “Population Ecology of Some Warblers in Northeastern Coniferous Forests,” Ecology 36 (1958): 533–536.) Fig. 5-2, p. 106

Specialist Species of Honeycreepers Figure 5.3: Specialist species of honeycreepers: Through natural selection, different species of honeycreepers developed specialized ecological niches that reduced competition between these species. Each species has evolved a specialized beak to take advantage of certain types of food resources. Fig. 5-3, p. 107

Most Consumer Species Feed on Live Organisms of Other Species Predators may capture prey by Walking Swimming Flying Pursuit and ambush Camouflage Chemical warfare

Predator-Prey Relationships Figure 5.4: Predator-prey relationship: This brown bear (the predator) in the U.S. state of Alaska has captured and will feed on this salmon (the prey). Fig. 5-4, p. 107

Most Consumer Species Feed on Live Organisms of Other Species (2) Prey may avoid capture by Run, swim, fly Protection: shells, bark, thorns Camouflage Chemical warfare Warning coloration Mimicry Deceptive looks Deceptive behavior

Some Ways Prey Species Avoid Their Predators Figure 5.5: These prey species have developed specialized ways to avoid their predators: (a, b) camouflage, (c–e) chemical warfare, (d, e) warning coloration, (f) mimicry, (g) deceptive looks, and (h) deceptive behavior. Fig. 5-5, p. 109

Figure 5.5: These prey species have developed specialized ways to avoid their predators: (a, b) camouflage, (c–e) chemical warfare, (d, e) warning coloration, (f) mimicry, (g) deceptive looks, and (h) deceptive behavior. (a) Span worm Fig. 5-5a, p. 109

(b) Wandering leaf insect Figure 5.5: These prey species have developed specialized ways to avoid their predators: (a, b) camouflage, (c–e) chemical warfare, (d, e) warning coloration, (f) mimicry, (g) deceptive looks, and (h) deceptive behavior. (b) Wandering leaf insect Fig. 5-5b, p. 109

Figure 5.5: These prey species have developed specialized ways to avoid their predators: (a, b) camouflage, (c–e) chemical warfare, (d, e) warning coloration, (f) mimicry, (g) deceptive looks, and (h) deceptive behavior. (c) Bombardier beetle Fig. 5-5c, p. 109

(d) Foul-tasting monarch butterfly Figure 5.5: These prey species have developed specialized ways to avoid their predators: (a, b) camouflage, (c–e) chemical warfare, (d, e) warning coloration, (f) mimicry, (g) deceptive looks, and (h) deceptive behavior. (d) Foul-tasting monarch butterfly Fig. 5-5d, p. 109

Figure 5.5: These prey species have developed specialized ways to avoid their predators: (a, b) camouflage, (c–e) chemical warfare, (d, e) warning coloration, (f) mimicry, (g) deceptive looks, and (h) deceptive behavior. (e) Poison dart frog Fig. 5-5e, p. 109

(f) Viceroy butterfly mimics monarch butterfly Figure 5.5: These prey species have developed specialized ways to avoid their predators: (a, b) camouflage, (c–e) chemical warfare, (d, e) warning coloration, (f) mimicry, (g) deceptive looks, and (h) deceptive behavior. (f) Viceroy butterfly mimics monarch butterfly Fig. 5-5f, p. 109

(g) Hind wings of Io moth resemble eyes of a much larger animal. Figure 5.5: These prey species have developed specialized ways to avoid their predators: (a, b) camouflage, (c–e) chemical warfare, (d, e) warning coloration, (f) mimicry, (g) deceptive looks, and (h) deceptive behavior. (g) Hind wings of Io moth resemble eyes of a much larger animal. Fig. 5-5g, p. 109

Figure 5.5: These prey species have developed specialized ways to avoid their predators: (a, b) camouflage, (c–e) chemical warfare, (d, e) warning coloration, (f) mimicry, (g) deceptive looks, and (h) deceptive behavior. (h) When touched, snake caterpillar changes shape to look like head of snake. Fig. 5-5h, p. 109

Predator and Prey Interactions Can Drive Each Other’s Evolution Intense natural selection pressures between predator and prey populations Coevolution Interact over a long period of time Bats and moths: echolocation of bats and sensitive hearing of moths

Coevolution: A Langohrfledermaus Bat Hunting a Moth Fig. 5-6, p. 110

Some Species Feed off Other Species by Living on or in Them Parasitism Parasite is usually much smaller than the host Parasite rarely kills the host Parasite-host interaction may lead to coevolution

Parasitism: Trout with Blood-Sucking Sea Lamprey Fig. 5-7, p. 110

In Some Interactions, Both Species Benefit Mutualism Nutrition and protection relationship Gut inhabitant mutualism Not cooperation: it’s mutual exploitation

Mutualism: Hummingbird and Flower Figure 5.8: Mutualism: This hummingbird benefits by feeding on nectar in this flower, and it benefits the flower by pollinating it. Fig. 5-8, p. 110

Mutualism: Oxpeckers Clean Rhinoceros; Anemones Protect and Feed Clownfish Fig. 5-9, p. 111

(a) Oxpeckers and black rhinoceros Figure 5.9: Examples of mutualism: (a) Oxpeckers (or tickbirds) feed on parasitic ticks that infest large, thick-skinned animals such as the endangered black rhinoceros. (b) A clownfish gains protection and food by living among deadly, stinging sea anemones and helps to protect the anemones from some of their predators. (a) Oxpeckers and black rhinoceros Fig. 5-9a, p. 111

(b) Clownfish and sea anemone Figure 5.9: Examples of mutualism: (a) Oxpeckers (or tickbirds) feed on parasitic ticks that infest large, thick-skinned animals such as the endangered black rhinoceros. (b) A clownfish gains protection and food by living among deadly, stinging sea anemones and helps to protect the anemones from some of their predators. (b) Clownfish and sea anemone Fig. 5-9b, p. 111

In Some Interactions, One Species Benefits and the Other Is Not Harmed Commensalism Epiphytes Birds nesting in trees

Commensalism: Bromiliad Roots on Tree Trunk Without Harming Tree Figure 5.10: In an example of commensalism, this bromeliad—an epiphyte, or air plant—in Brazil’s Atlantic tropical rain forest roots on the trunk of a tree, rather than in soil, without penetrating or harming the tree. In this interaction, the epiphyte gains access to sunlight, water, and nutrients from the tree’s debris; the tree apparently remains unharmed and gains no benefit. Fig. 5-10, p. 111

How Do Communities and Ecosystems Respond to Changing Environmental Conditions? The structure and species composition of communities and ecosystems change in response to changing environmental conditions through a process called ecological succession.

Communities and Ecosystems Change over Time: Ecological Succession Natural ecological restoration Primary succession Secondary succession

Some Ecosystems Start from Scratch: Primary Succession No soil in a terrestrial system No bottom sediment in an aquatic system Takes hundreds to thousands of years Need to build up soils/sediments to provide necessary nutrients

Primary Ecological Succession Figure 5.19: Primary ecological succession: Over almost a thousand years, these plant communities developed, starting on bare rock exposed by a retreating glacier on Isle Royal, Michigan (USA) in northern Lake Superior. The details of this process vary from one site to another. Question: What are two ways in which lichens, mosses, and plants might get started growing on bare rock? Fig. 5-19, p. 119

Some Ecosystems Do Not Have to Start from Scratch: Secondary Succession (1) Some soil remains in a terrestrial system Some bottom sediment remains in an aquatic system Ecosystem has been Disturbed Removed Destroyed

Natural Ecological Restoration of Disturbed Land Figure 5.20: Natural ecological restoration of disturbed land: This diagram shows the undisturbed secondary ecological succession of plant communities on an abandoned farm field in the U.S. state of North Carolina. It took 150–200 years after the farmland was abandoned for the area to become covered with a mature oak and hickory forest. A new disturbance such as deforestation or fire would create conditions favoring pioneer species such as annual weeds. In the absence of new disturbances, secondary succession would recur over time, but not necessarily in the same sequence shown here. See an animation based on this figure at CengageNOW. Questions: Do you think the annual weeds (left) would continue to thrive in the mature forest (right)? Why or why not? Fig. 5-20, p. 120

Secondary Ecological Succession in Yellowstone Following the 1998 Fire Figure 5.21: These young lodgepole pines growing around standing dead trees after a 1998 forest fire in Yellowstone National Park are an example of secondary ecological succession. Fig. 5-21, p. 120

Some Ecosystems Do Not Have to Start from Scratch: Secondary Succession (2) Primary and secondary succession Tend to increase biodiversity Increase species richness and interactions among species Primary and secondary succession can be interrupted by Fires Hurricanes Clear-cutting of forests Plowing of grasslands Invasion by nonnative species

Science Focus: How Do Species Replace One Another in Ecological Succession? Facilitation Inhibition Tolerance

Succession Doesn’t Follow a Predictable Path Traditional view Balance of nature and a climax community Current view Ever-changing mosaic of patches of vegetation Mature late-successional ecosystems State of continual disturbance and change

Living Systems Are Sustained through Constant Change Inertia, persistence Ability of a living system to survive moderate disturbances Resilience Ability of a living system to be restored through secondary succession after a moderate disturbance Some systems have one property, but not the other: tropical rainforests

Three Big Ideas Certain interactions among species affect their use of resources and their population sizes. There are always limits to population growth in nature. Changes in environmental conditions cause communities and ecosystems to gradually alter their species composition and population sizes (ecological succession).