SiD Electronic Concepts

Slides:



Advertisements
Similar presentations
Sci-Fi tracker for IT replacement 1 Lausanne 9. December 2010.
Advertisements

Victoria04 R. Frey1 Silicon/Tungsten ECal Status and Progress Ray Frey University of Oregon Victoria ALCPG Workshop July 29, 2004 Overview Current R&D.
SCIPP R&D on Long Shaping- Time Electronics SLAC SiD Workshop October 26-29, 2006 Bruce Schumm.
7 January 2005 MDI Workshop M. Breidenbach 1 SiD Electronic Concepts SLAC –D. Freytag –G. Haller –J. Deng –mb Oregon –J. Brau –R. Frey –D. Strom BNL –V.
7 June 2006 SLAC DOE Review M. Breidenbach 1 KPiX & EMCal SLAC –D. Freytag –G. Haller –R. Herbst –T. Nelson –mb Oregon –J. Brau –R. Frey –D. Strom BNL.
Design Considerations for a Si/W EM Cal. at a Linear Collider M. Breidenbach, D. Freytag, G. Haller, M. Huffer, J.J Russell Stanford Linear Accelerator.
R Frey ESTB20111 Silicon-Tungsten Electromagnetic Calorimeter R&D Collaboration M. Breidenbach, D. Freytag, N. Graf, R. Herbst, G. Haller, J. Jaros, T.
NIU Workshop R. Frey1 Reconstruction Issues for Silicon/Tungsten ECal R. Frey U. Oregon NIU Workshop, Nov 8, 2002.
28 June 2002Santa Cruz LC Retreat M. Breidenbach1 SD – Silicon Detector EM Calorimetry.
ICLC Paris R. Frey1 Silicon/Tungsten ECal for SiD – Status and Progress Ray Frey University of Oregon ICLC Paris, April 22, 2004 Overview (brief) Current.
SCIPP R&D on Long Shaping- Time Electronics SLAC SiD Workshop October 26-28, 2006 Bruce Schumm.
LCWS2002 R. Frey1 Silicon/Tungsten ECal for the SD Detector M. Breidenbach, D. Freytag, G. Haller, M. Huffer, J.J Russell Stanford Linear Accelerator Center.
ITBW07 R. Frey1 ECal with Integrated Electronics Ray Frey, U of Oregon Ongoing R&D Efforts: CALICE silicon-tungsten ECal – 2 parallel efforts:  Technology.
19 March 2005 LCWS 05 M. Breidenbach 1 SiD Electronic Concepts SLAC –D. Freytag –G. Haller –J. Deng –mb Oregon –J. Brau –R. Frey –D. Strom BNL –V. Radeka.
SiD EMCal Testbeam Prototype M. Breidenbach for the SiD EMCal and Electronics Subsystems.
R Frey SiD at SLAC1 SiD ECal overview Physics (brief) Proposed technical solutions: silicon/tungsten  “traditional” Si sensors  MAPS Progress and Status.
KPiX - An Array of Self Triggered Charge Sensitive Cells Generating Digital Time and Amplitude Information Presented by Dietrich Freytag Stanford Linear.
1 Si-W ECal with Integrated Readout Mani Tripathi University of California, Davis LCWS08 Chicago Nov 17, 2008.
10 July 2001Snowmass 2001 M. Breidenbach1 This Detector Can’t Be Built without lots of work.
Gunther Haller SiD LOI Meeting March 2, LOI Content: Electronics and DAQ Gunther Haller Research Engineering Group.
1 Digital Active Pixel Array (DAPA) for Vertex and Tracking Silicon Systems PROJECT G.Bashindzhagyan 1, N.Korotkova 1, R.Roeder 2, Chr.Schmidt 3, N.Sinev.
September 8-14, th Workshop on Electronics for LHC1 Channel Control ASIC for the CMS Hadron Calorimeter Front End Readout Module Ray Yarema, Alan.
SiD Concept – R&D Needs Andy White U. Texas at Arlington SiD Concept Meeting LCWS06 Bangalore, India March 11, 2006.
VIP1: a 3D Integrated Circuit for Pixel Applications in High Energy Physics Jim Hoff*, Grzegorz Deptuch, Tom Zimmerman, Ray Yarema - Fermilab *
L.ROYER – TWEPP Oxford – Sept The chip Signal processing for High Granularity Calorimeter (Si-W ILC) L.Royer, J.Bonnard, S.Manen, X.Soumpholphakdy.
Silicon-Tungsten EM Calorimeter R&D
EUDET JRA3 ECAL and FEE C. de La Taille (LAL-Orsay) EUDET status meeting DESY 10 sep 2006.
KPiX - An Array of Self Triggered Charge Sensitive Cells Generating Digital Time and Amplitude Information Presented by Dietrich Freytag Stanford Linear.
SiD R&D tasks for the LOI - Subsystem R&D tasks - Summary of SiD R&D - Prioritization of R&D tasks -> Document for DoE/NSF ~Feb 2009 (Mainly based on Marty’s.
FPCCD option Yasuhiro Sugimoto 2012/5/24 ILD 1.
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
R Frey SiD ECal at ALCPG071 SiD ECal overview Physics requirements Proposed technical solutions: silicon/tungsten  “traditional” Si diodes  MAPS LOI.
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
1 R&D Advances: SiW Calorimeter LCWS 2010 Beijing SiD Concept Meeting March 28, 2010 John Jaros for SiD SiW Group (thanks to Ray, Ryan, Mani, and Marco.
BeamCal Electronics Status FCAL Collaboration Meeting LAL-Orsay, October 5 th, 2007 Gunther Haller, Dietrich Freytag, Martin Breidenbach and Angel Abusleme.
R Frey LCWS071 A Silicon-Tungsten ECal with Integrated Electronics for the ILC -- status Currently optimized for the SiD concept Baseline configuration:
Fermilab Silicon Strip Readout Chip for BTEV
-1-CERN (11/24/2010)P. Valerio Noise performances of MAPS and Hybrid Detector technology Pierpaolo Valerio.
EMCal Sensor Status (* M. Breidenbach*,
S. Bota – Calorimeter Electronics overview - July 2002 Status of SPD electronics Very Front End Review of ASIC runs What’s new: RUN 4 and 5 Next Actions.
Silicon/Tungsten ECal for the SD Detector – Status and Progress R. Frey U. Oregon UT Arlington, Jan 10, 2003.
Silicon Microstrip Tracking R&D in the US SiLC Collaboration Meeting University of Paris VII January 25, 2010 Bruce Schumm Santa Cruz Institute for Particle.
Front-end Electronic for the CALICE ECAL Physic Prototype Christophe de La Taille Julien Fleury Gisèle Martin-Chassard Front-end Electronic for the CALICE.
Durham TB R. Frey1 ECal R&D in N. America -- Test Beam Readiness/Plans Silicon-tungsten SLAC, Oregon, Brookhaven (SOB) Scintillator tiles – tungsten U.
SKIROC status Calice meeting – Kobe – 10/05/2007.
Understanding of SKIROC performance T. Frisson (LAL) On behalf of the SiW ECAL team Special thanks to the electronic and DAQ experts: Stéphane Callier,
The design of fast analog channels for the readout of strip detectors in the inner layers of the SuperB SVT 1 INFN Sezione di Pavia I Pavia, Italy.
Budker INP V.Aulchenko1,2, L.Shekhtman1,2, V.Zhulanov1,2
 Silicon Vertex Detector Upgrade for the Belle II Experiment
Charge sensitive amplifier
LHC1 & COOP September 1995 Report
CEPC 数字强子量能器读出电子学预研进展
INFN Pavia and University of Bergamo
Overview of the project
SiD Calorimeter R&D Collaboration
The ECal in the SiD LOI Overview of status and progress
A SiW EM Calorimeter for the Silicon Detector
detector development readout electronics interconnects bump bonding
HV-MAPS Designs and Results I
CALICE COLLABORATION LPC Clermont LAL Orsay Samuel MANEN Julien FLEURY
LCDRD ECal R&D Physics goals drive the design
A Silicon-Tungsten ECal for the SiD Concept
Simulation study for Forward Calorimeter in LHC-ALICE experiment
ILC Detector Technology
SiD Tracker Concepts M. Breidenbach
Silicon pixel detectors and electronics for hybrid photon detectors
AMICSA, June 2018 Leuven, Belgium
Signal processing for High Granularity Calorimeter
Readout Electronics for Pixel Sensors
Presentation transcript:

SiD Electronic Concepts SLAC D. Freytag G. Haller R. Herbst mb Oregon J. Brau R. Frey D. Strom BNL V. Radeka UC Davis R. Lander M. Trapanni 21 October 2005 M. Breidenbach

Overview SLAC/Oregon/BNL is developing a read out chip (ROC) for the Si-W calorimeter. Highly integrated into structural design – bump bonded to detector 1024 pixels / ROC ---Thus working name KPiX Rough concept for “DAQ” strategy. Similar architecture with reduced dynamic range should work for Si strips. 2048 pixels / ROC Similar (identical?) architecture should work for HCal and muon system. Beginning architectural integration in detector. Will not work for very forward systems. 21 October 2005 M. Breidenbach

Concept Connection Layer 21 October 2005 M. Breidenbach

Detector Layout Real Thing 21 October 2005 M. Breidenbach

Wafer and readout chip connections 21 October 2005 M. Breidenbach

21 October 2005 M. Breidenbach

Conceptual Schematic – Not to any scale!!! Data Concentrator “Longitudinal” Data Cable “Transverse” Data Cable Locating Pins Readout Chip “KPix” Detectors Tungsten Radiator ~ 1m 21 October 2005 M. Breidenbach

EMCal Schematic Cross section Metallization on detector from KPix to cable Bump Bonds Tungsten Kapton Data Cable KPix Si Detector Kapton Tungsten Heat Flow Thermal conduction adhesive 21 October 2005 M. Breidenbach

Electronics requirements Signals <2000 e noise Require MIPs with S/N > 7 Max. signal 2500 MIPs (5mm pixels) Capacitance Pixels: 5.7 pF Traces: ~0.8 pF per pixel crossing Crosstalk: 0.8 pF/Gain x Cin < 1% Resistance 300 ohm max Power < 40 mW/wafer  power cycling (An important LC feature!) Provide fully digitized outputs of charge and time on one ASIC for every wafer. 21 October 2005 M. Breidenbach

Cal strobe gated by 1024 long SR. Pixel pattern arbitrary. Charge Amplifier Event discriminator implemented as limiter followed by discriminator. Limiter holds off resets, permitting longer integration time for discriminator and data hold. Discriminator threshold selected from either of two ROC wide DAC’s. Track & Hold (x4) Cal strobe gated by 1024 long SR. Pixel pattern arbitrary. 21 October 2005 M. Breidenbach

Pulse “Shaping” Take full advantage of synchronous bunch structure: Reset (clamp) feedback cap before bunch arrival. This is equivalent to double correlated sampling, except that the “before” measurement is forced to zero. This takes out low frequency noise and any integrated excursions of the amplifier. Integration time constant will be 0.5 – 1 μsec. Sample synchronously at 2 – 3 integration time constants. Time from reset 1 – 3 μsec, which is equivalent to a 1 – 3 μsec differentiation. Noise: ~1000 e- for ~ 20 pF. (100 μA through input FET). 21 October 2005 M. Breidenbach

21 October 2005 M. Breidenbach

Power 21 October 2005 M. Breidenbach

KPix Cell 1 of 1024 21 October 2005 M. Breidenbach

Prototype Layout 2x32 2 x 16 Calorimetry 2 x 16 Si Strip 21 October 2005 M. Breidenbach

21 October 2005 M. Breidenbach

Data Flow - ~ 4 Mb/train from backgrounds… 21 October 2005 M. Breidenbach

Comments The basic architecture should work with all the low occupancy sub-systems. Including Tracker, EmCal, HCal, and muon system. It does not address VXD issues – presumably CMOS to be developed – or the completely occupied Very Forward Calorimeters. A variant might work in the forward regions of the tracker and calorimeters. The architecture is insensitive to the bunch separation within a train. The cost of a mask set is high, so development will be with 2 x 32 subsets instead of the 32 x 32 array. (2 x 16 calorimeter; 2 x 16 tracker) The unit cost of a large number of chips seems fine - <~ $40. Substantial design and simulation is done on KPix Readout chip. Submission expected this Monday!!! 21 October 2005 M. Breidenbach