Land Use: Landscapes, Forests, Parks, and Reserves

Slides:



Advertisements
Similar presentations
Chapter 10 Sustaining Terrestrial Biodiversity: The Ecosystem Approach
Advertisements

Land. Land Use in the World US Public Lands Types of Forests 1) Old-growth (primary) forests – uncut or regenerated forest not hugely impacted by.
Terrestrial Ecosystems— Management and Threats Chapter 10.
World Forests Forests cover 30% of the world’s land surface.
Chapter 10 Sustaining Terrestrial Biodiversity: The Ecosystem Approach.
Ch 10 Sustaining Terrestrial Biodiversity
Land Chapter 14.
Land Use: Landscapes, Forests, Parks, and Reserves Chapter 13 Botkin and Keller.
Principles of Forestry
Sustaining Terrestrial Biodiversity: The Ecosystem Approach
What is the Ecosystem Approach to Sustaining Biodiversity?
Sustaining Terrestrial Biodiversity: The Ecosystem Approach
Sustaining Terrestrial Biodiversity by the Ecosystem Approach
Chapter 10 Sustaining Terrestrial Biodiversity: The Ecosystem Approach.
Sustaining Biodiversity: The Ecosystem Approach Chapter 8 Sections 5-8 The Short Version.
1 Land Use: Forests World Land Uses World Forests Tropical Forests Temperate Forests What is a forest?
The stock is the present accumulated quantity of natural capital. It is a supply accumulated for future use; a store. The natural income is any sustainable.
Managing and Protecting Forests.   More than a third of the land in the U.S. consists of publicly owned national forests, resource lands, parks, wildlife.
Chapter 11 Sustaining Terrestrial Biodiversity: The Ecosystem Approach.
Forest Resources Types of timber harvesting & sustainable management.
Sustaining Terrestrial Biodiversity: The Ecosystem Approach Brian Kaestner Saint Mary’s Hall Brian Kaestner Saint Mary’s Hall Thanks to Miller and Clements.
Sustaining Terrestrial Biodiversity: The Ecosystem Approach G. Tyler Miller’s Living in the Environment 13 th Edition Chapter 23 G. Tyler Miller’s Living.
Chapter 10 Sustaining Terrestrial Biodiversity: The Ecosystem Approach.
10.2 How Should We Manage and Sustain Forests?
LandSection 3 Rural Land Management The main categories of rural land – farmland –rangeland –forest land –national and state parks, and wilderness Condition.
Chapter 10 Sustaining Terrestrial Biodiversity: The Ecosystem Approach.
Key Concepts Ch. 23  Human land use  Types and uses of US public lands  Forests and forest management  Implications of deforestation  Management of.
Chapter 10 Sustaining Terrestrial Biodiversity: The Ecosystem Approach.
Sustaining Terrestrial Biodiversity: The Ecosystem Approach G. Tyler Miller’s Living in the Environment 14 th Edition Chapter 11 G. Tyler Miller’s Living.
Land Use: Forests and Grasslands. Fig. 10-4, p. 193 Support energy flow and chemical cycling Reduce soil erosion Absorb and release water Purify water.
Forestry. MANAGING AND SUSTAINING FORESTS  Forests provide a number of ecological and economic services that researchers have attempted to estimate their.
Land Use in the World.
Wildlife management & ecological conservation. Biodiversity hotspots for conservation  Areas where high concentrations of endemic species are undergoing.
Chapter Sustaining Terrestrial Biodiversity: The Ecosystem Approach.
Fig. 10-4, p. 193 Support energy flow and chemical cycling Reduce soil erosion Absorb and release water Purify water and air Influence local and regional.
Chapter 10 Sustaining Terrestrial Biodiversity: The Ecosystem Approach.
Forestry Chapter 10.
10-2 How Should We Manage and Sustain Forests? Concept 10-2 We can sustain forests by emphasizing the economic value of their ecological services, removing.
Chapter 10 Sustaining Terrestrial Biodiversity: The Ecosystem Approach Fern Gully.
Forests & Grasslands Management
Chapter 10 Sustaining Terrestrial Biodiversity: The Ecosystem Approach.
Sustaining Terrestrial Biodiversity: The Ecosystem Approach G. Tyler Miller’s Living in the Environment 14 th Edition Chapter 11 G. Tyler Miller’s Living.
Sustaining Terrestrial Biodiversity Asim Zia Introduction to Environmental Issues EnvS 001, Spring 2007 Department of Environmental Studies San Jose State.
Sustaining Terrestrial Biodiversity: The Ecosystem Approach
Principles of Forestry
Principles of Forestry
Old-Growth Forests and Deforestation
Forestry Miller—Chapter 23.
Sustaining Terrestrial Biodiversity: The Ecosystem Approach
Forestry – Logging Methods
Sustaining Terrestrial Biodiversity: The Ecosystem Approach
Rangeland.
Chapter 12 - Forests Why are forests so ecologically & economically valuable, and what environmental problems & solutions exist for forests going forward?
Warm Up 1) 3) List three things that farmers do that damage the environment
Sustaining Terrestrial Biodiversity: The Ecosystem Approach
Sustaining Terrestrial Biodiversity: The Ecosystem Approach
Do Now: Movie Clip While watching the clip answer the following:
Chapter 17 Land Resources.
Forest Ecosystem and Management
Old-Growth Forests and Deforestation
Grasslands and Rangelands National Parks and Reserves
Chapter 12 - Forests Why are forests so ecologically & economically valuable, and what environmental problems & solutions exist for forests going forward?
Biodiversity 3.
Sustaining Terrestrial Biodiversity: The Ecosystem Approach
Grasslands and Rangelands National Parks and Reserves
Grasslands and Rangelands National Parks and Reserves
Review Biodiversity.
Managing Forest Resources
10 Sustaining Terrestrial Biodiversity: Saving Ecosystems and Ecosystem Services.
Sustaining Terrestrial Biodiversity: The Ecosystem Approach
Presentation transcript:

Land Use: Landscapes, Forests, Parks, and Reserves Chapter 13 Botkin and Keller Chapter 10 Miller

Core Case Study: Reintroducing Wolves to Yellowstone Endangered Species 1850-1900 two million wolves were destroyed. Keystone Species Keeps prey away from open areas near stream banks. Vegetation reestablishes. Species diversity expands. Figure 10-1

HUMAN IMPACTS ON TERRESTRIAL BIODIVERSITY We have depleted and degraded some of the earth’s biodiversity and these threats are expected to increase. Figure 10-2

Why Should We Care About Biodiversity? Use Value: For the usefulness in terms of economic and ecological services. Nonuse Value: existence, aesthetics, bequest for future generations. Figure 10-3

Support energy flow and chemical cycling Natural Capital Forests Ecological Services Economic Services Support energy flow and chemical cycling Reduce soil erosion Absorb and release water Purify water and air Influence local and regional climate Store atmospheric carbon Provide numerous wildlife habitats Fuelwood Lumber Pulp to make paper Mining Livestock grazing Recreation Jobs Figure 10.4 Natural capital: major ecological and economic services provided by forests. QUESTION: Which two ecological services and which two economic services do you think are the most important? Fig. 10-4, p. 193

Types of Forests Old-growth forest: uncut or regenerated forest that has not been seriously disturbed for several hundred years. 22% of world’s forest. Hosts many species with specialized niches. Figure 10-5

Types of Forests Second-growth forest: a stand of trees resulting from natural secondary succession. Tree plantation: planted stands of a particular tree species. Figure 10-6

Weak trees removed Clear cut Seedlings planted 25 15 10 30 Years of growth 5 Figure 10.6 Natural capital degradation: Short (25- to 30-year) rotation cycle of cutting and regrowth of a monoculture tree plantation in modern industrial forestry. In tropical countries, where trees can grow more rapidly year-round, the rotation cycle can be 6–10 years. Old-growth or secondary forests are clear-cut to provide land for growing most tree plantations. Fig. 10-6, p. 195

Natural Capital Degradation Deforestation • Decreased soil fertility from erosion • Runoff of eroded soil into aquatic systems • Premature extinction of species with specialized niches • Loss of habitat for native species and migratoryspecies such as birds and butterflies • Regional climate change from extensive clearing • Release of CO2 into atmosphere • Acceleration of flooding Figure 10.7 Natural capital degradation: harmful environmental effects of deforestation that can reduce biodiversity and the ecological services provided by forests (Figure 10-4, left). QUESTION: What are the two direct and two indirect effects of your lifestyle on deforestation? Fig. 10-7, p. 196

Case Study: Deforestation and the Fuelwood Crisis Almost half the people in the developing world face a shortage of fuelwood and charcoal. In Haiti, 98% of country is deforested. MIT scientist has found a way to make charcoal from spent sugarcane.

Harvesting Trees Building roads into previously inaccessible forests paves the way for fragmentation, destruction, and degradation. Figure 10-8

Harvesting Trees Trees can be harvested individually from diverse forests (selective cutting), an entire forest can be cut down (clear cutting), or portions of the forest is harvested (e.g. strip cutting). Figure 10-9

(a) Selective cutting Fig. 10-9a, p. 198 Figure 10.9 Major tree harvesting methods. Fig. 10-9a, p. 198

(b) Clear-cutting Fig. 10-9b, p. 198 Figure 10.9 Major tree harvesting methods. Fig. 10-9b, p. 198

(c) Strip cutting Uncut Cut 1 year ago Dirt road Cut 3–10 years ago Figure 10.9 Major tree harvesting methods. Stream Fig. 10-9c, p. 198

Effects of clear-cutting in the state of Washington, U.S. Harvesting Trees Effects of clear-cutting in the state of Washington, U.S. Figures 10-10 and 10-11

Clear-Cutting Forests Trade-Offs Clear-Cutting Forests Advantages Disadvantages Higher timber yields Maximum profits in shortest time Can reforest with fast-growing trees Short time to establish new stand of trees Needs less skill and planning Good for tree species needing full or moderate sunlight Reduces biodiversity Disrupts ecosystem processes Destroys and fragments wildlife habitats Leaves large openings Increases water pollution, flooding, and erosion on steep slopes Eliminates most recreational value Figure 10.11 Trade-offs: advantages and disadvantages of clear-cutting forests. QUESTION: Which single advantage and which single disadvantage do you think are the most important? Fig. 10-11, p. 198

Solutions We can use forests more sustainably by emphasizing: Economic value of ecological services. Harvesting trees no faster than they are replenished. Protecting old-growth and vulnerable areas. Figure 10-12

• Identify and protect forest areas high in biodiversity Solutions Sustainable Forestry • Identify and protect forest areas high in biodiversity • Grow more timber on long rotations • Rely more on selective cutting and strip cutting • Stop clear-cutting on steep slopes • Cease logging of old-growth forests • Prohibit fragmentation of remaining large blocks offorest • Sharply reduce road building into uncut forest areas • Leave most standing dead trees and fallen timber for wildlife habitat and nutrient recycling • Certify timber grown by sustainable methods • Include ecological services of forests in estimating their economic value • Plant tree plantations on deforested and degraded land • Shift government subsidies from harvesting trees to planting trees Figure 10.12 Solutions: ways to manage forests more sustainably. QUESTION: Which three of these solutions do you think are the most important? Fig. 10-12, p. 199

CASE STUDY: FOREST RESOURCES AND MANAGEMENT IN THE U.S. U.S. forests cover more area than in 1920. Since the 1960’s, an increasing area of old growth and diverse second-growth forests have been clear-cut. Often replace with tree farms. Decreases biodiversity. Disrupts ecosystem processes.

Types and Effects of Forest Fires Depending on their intensity, fires can benefit or harm forests. Burn away flammable ground material. Release valuable mineral nutrients. Figure 10-13

Solutions: Controversy Over Fire Management To reduce fire damage: Set controlled surface fires. Allow fires to burn on public lands if they don’t threaten life and property. Clear small areas around property subject to fire.

Solutions: Controversy Over Fire Management In 2003, U.S. Congress passed the Healthy Forest Restoration Act: Allows timber companies to cut medium and large trees in 71% of the national forests. In return, must clear away smaller, more fire-prone trees and underbrush. Some forest scientists believe this could increase severe fires by removing fire resistant trees and leaving highly flammable slash.

Controversy over Logging in U.S. National Forests Should U.S. national forests be primarily used for: Timber. Ecological services. Recreation. Mix of these uses. Figure 10-14

Solutions: Reducing Demand for Harvest Trees Tree harvesting can be reduced by wasting less wood and making paper and charcoal fuel from fibers that do not come from trees. Kenaf is a promising plant for paper production. Figure 10-15

American Forests in a Globalized Economy Timber from tree plantations in temperate and tropical countries is decreasing the need for timber production in the U.S. This could help preserve the biodiversity in the U.S. by decreasing pressure to clear-cut old-growth and second-growth forests. This may lead to private land owners to sell less profitable land to developers. Forest management policy will play a key role.

CASE STUDY: TROPICAL DEFORESTATION Large areas of ecologically and economically important tropical forests are being cleared and degraded at a fast rate. Figure 10-16

CASE STUDY: TROPICAL DEFORESTATION At least half of the world’s terrestrial plant and animal species live in tropical rain forests. Large areas of tropical forest are burned to make way for cattle ranches and crops. Figure 10-17

Why Should We Care about the Loss of Tropical Forests? About 2,100 of the 3,000 plants identified by the National Cancer Institute as sources of cancer-fighting chemicals come from tropical forests. Figure 10-18

Causes of Tropical Deforestation and Degradation Tropical deforestation results from a number of interconnected primary and secondary causes. Figure 10-19

Sustaining Tropical Forests Solutions Sustaining Tropical Forests Prevention Restoration Protect most diverse and endangered areas Educate settlers about sustainable agriculture and forestry Phase out subsidies that encourage unsustainable forest use Add subsidies that encourage sustainable forest use Protect forests with debt-for-nature swaps and conservation easements Certify sustainably grown timber Reduce illegal cutting Reduce poverty Slow population growth Reforestation Rehabilitation of degraded areas Concentrate farming and ranching on already-cleared areas Figure 10.20 Solutions: ways to protect tropical forests and use them more sustainably. QUESTION: Which three of these solutions do you think are the most important? Fig. 10-20, p. 207

MANAGING AND SUSTAINING GRASSLANDS Almost half of the world’s livestock graze on natural grasslands (rangelands) and managed grasslands (pastures). We can sustain rangeland productivity by controlling the number and distribution of livestock and by restoring degraded rangeland.

MANAGING AND SUSTAINING GRASSLANDS Overgrazing occurs when too many animals graze for too long and exceed carrying capacity of a grassland area. Figure 10-21

MANAGING AND SUSTAINING GRASSLANDS Example of restored area along the San Pedro River in Arizona after 10 years of banning grazing and off-road vehicles. Figure 10-22

Case Study: Grazing and Urban Development in the American West Ranchers, ecologists, and environmentalists are joining together to preserve the grasslands on cattle ranches. Paying ranchers conservation easements (barring future owners from development). Pressuring government to zone the land to prevent development of ecologically sensitive areas.

NATIONAL PARKS Countries have established more than 1,100 national parks, but most are threatened by human activities. Local people invade park for wood, cropland, and other natural resources. Loggers, miners, and wildlife poachers also deplete natural resources. Many are too small to sustain large-animal species. Many suffer from invasive species.

Case Study: Stresses on U.S. National Parks Overused due to popularity. Inholdings (private ownership) within parks threaten natural resources. Air pollution. Figure 10-23

Suggestions for sustaining and Expanding National Parks • Integrate plans for managing parks and nearby federal lands • Add new parkland near threatened parks • Buy private land inside parks • Locate visitor parking outside parks and use shuttle buses for entering and touring heavily used parks • Increase funds for park maintenance and repairs • Survey wildlife in parks • Raise entry fees for visitors and use funds for park management and maintenance • Limit the number of visitors to crowded park areas • Increase the number and pay of park rangers • Encourage volunteers to give visitor lectures and tours • Seek private donations for park maintenance and repairs Figure 10.24 Solutions: suggestions for sustaining and expanding the national park system in the United States. QUESTION: Which two of these solutions do you think are the most important? (Data from Wilderness Society and National Parks and Conservation Association) Fig. 10-24, p. 211

NATURE RESERVES Ecologists call for protecting more land to help sustain biodiversity, but powerful economic and political interests oppose doing this. Currently 12% of earth’s land area is protected. Only 5% is strictly protected from harmful human activities. Conservation biologists call for full protection of at least 20% of earth’s land area representing multiple examples of all biomes.

NATURE RESERVES Large and medium-sized reserves with buffer zones help protect biodiversity and can be connected by corridors. Costa Rica has consolidated its parks and reserves into 8 megareserves designed to sustain 80% if its biodiversity. Figure 10-10B

NATURE RESERVES A model biosphere reserve that contains a protected inner core surrounded by two buffer zones that people can use for multiple use. Figure 10-25

NATURE RESERVES Geographic Information System (GIS) mapping can be used to understand and manage ecosystems. Identify areas to establish and connect nature reserves in large ecoregions to prevent fragmentation. Developers can use GIS to design housing developments with the least environmental impact. We can prevent or slow down losses of biodiversity by concentrating efforts on protecting global hot spots where significant biodiversity is under immediate threat. Conservation biologists are helping people in communities find ways to sustain local biodiversity while providing local economic income.

34 hotspots identified by ecologists as important and endangered centers of biodiversity. Figure 10-26

NATURE RESERVES Wilderness is land legally set aside in a large enough area to prevent or minimize harm from human activities. Only a small percentage of the land area of the United States has been protected as wilderness.

ECOLOGICAL RESTORATION Restoration: trying to return to a condition as similar as possible to original state. Rehabilitation: attempting to turn a degraded ecosystem back to being functional. Replacement: replacing a degraded ecosystem with another type of ecosystem. Creating artificial ecosystems: such as artificial wetlands for flood reduction and sewage treatment.

ECOLOGICAL RESTORATION Five basic science-based principles for ecological restoration: Identify cause. Stop abuse by eliminating or sharply reducing factors. Reintroduce species if necessary. Protect area form further degradation. Use adaptive management to monitor efforts, assess successes, and modify strategies.

Sustaining Terrestrial Biodiversity What Can You Do? Sustaining Terrestrial Biodiversity • Adopt a forest. • Plant trees and take care of them. • Recycle paper and buy recycled paper products. • Buy sustainable wood and wood products. • Choose wood substitutes such as bamboo furniture and recycled plastic outdoor furniture, decking, and fencing. • Restore a nearby degraded forest or grassland. • Landscape your yard with a diversity of plants natural to the area. • Live in town because suburban sprawl reduces biodiversity. Figure 10.27 Individuals matter: ways to help sustain terrestrial biodiversity. Fig. 10-27, p. 219