C. David, IEEE Conference, Rome,

Slides:



Advertisements
Similar presentations
Thin Films, Diffraction, and Double slit interference
Advertisements

Optical sources Lecture 5.
Interference and Diffraction
Shaping the color Optical property of photonic crystals Shine.
Fire Protection Laboratory Methods Day
Chapter 8 Planar Scintigaraphy
Stanford Synchrotron Radiation Lightsource Sources and Optics for XAS Apurva Mehta.
Spectroscopic Data ASTR 3010 Lecture 16 Textbook Ch. 11.
Optical Coherence Tomography Zhongping Chen, Ph.D. Optical imaging in turbid media Coherence and interferometry Optical coherence.
Exam II Review. Review of traveling wave interference Phase changes due to: Optical path length differences sources out of phase General solution.
ERL & Coherent X-ray Applications
Chapter 25: Interference and Diffraction
3: Interference, Diffraction and Polarization
Interference Diffraction and Lasers
Demonstration of Sub- Rayleigh Lithography Using a Multi-Photon Absorber Heedeuk Shin, Hye Jeong Chang*, Malcolm N. O'Sullivan-Hale, Sean Bentley #, and.
III. Analytical Aspects Summary Cheetham & Day, Chapters 2, 3 Chemical Characterization of Solid-State Materials Chemical Composition: Bulk, Surface, …
NA62 Gigatracker Working Group Meeting 2 February 2010 Massimiliano Fiorini CERN.
Effective lens aperture Deff
Resident Physics Lectures
Waveguide High-Speed Circuits and Systems Laboratory B.M.Yu High-Speed Circuits and Systems Laboratory 1.
IPBSM status and plan ATF project meeting M.Oroku.
Study of Phase-Dispersive X-Ray Imaging Tomomi Ohgaki and Ichita Endo (Hiroshima Univ.)
BROOKHAVEN SCIENCE ASSOCIATES BIW ’ 06 Lepton Beam Emittance Instrumentation Igor Pinayev National Synchrotron Light Source BNL, Upton, NY.
PHYS 430/603 material Laszlo Takacs UMBC Department of Physics
The Tungsten-Scintillating Fiber Accordion Electromagnetic Calorimeter for the sPHENIX Detector Craig Woody, for the PHENIX Collaboration Physics Department,
Interference Applications Physics 202 Professor Lee Carkner Lecture 25.
Talbot effect in X-Ray Waveguides I. Bukreeva 1,2, A. Cedola 1, A. Sorrentino 1  F. Scarinci 1, M. Ilie 1, M. Fratini 1, and S. Lagomarsino 1 1 Istituto.
VCI2010 Photonic Crystals: A Novel Approach to Enhance the Light Output of Scintillation Based Detectors 11/19/2015 Arno KNAPITSCH a, Etiennette AUFFRAY.
High resolution X-ray analysis of a proximal human femur with synchrotron radiation and an innovative linear detector M.Bettuzzi, R. Brancaccio, F.Casali,
Quantum Imaging with Undetected Photons
3. Optical Coherence Tomography (OCT)
1.Stable radiation source 2.Wavelength selector 3.Transparent sample holder: cells/curvettes made of suitable material (Table 7- 2) 4.Radiation detector.
Phase Contrast sensitive Imaging
Dr. Yingtian Pan’s Lab Unjoo Lee. About him  He is an associate Professor
IPBSM Operation 11th ATF2 Project Meeting Jan. 14, 2011 SLAC National Accelerator Laboratory Menlo Park, California Y. Yamaguchi, M.Oroku, Jacqueline Yan.
Copyright 2009 CSEM | PhD Seminar, 4 th June 2009| V. Revol | Page 0 X-ray Phase Contrast Imaging Vincent Revol Zürich,
Considerations on the possibility of Phase Contrast Mammography using ICS sources B. Golosio a, P. Delogu b, I. Zanette b, M. Carpinelli a, G. L. Masala.
Highlights of science of USR Yuhui Dong BSRF, IHEP, CAS 2012/10/29.
1 Opto-Acoustic Imaging 台大電機系李百祺. 2 Conventional Ultrasonic Imaging Spatial resolution is mainly determined by frequency. Fabrication of high frequency.
Presentation on.  There are many methods for measuring of fiber structure. Such as:  The absorption of infrared radiation  Raman scattering of light.
Evaluation of a CCD Imaging Detector with the Medipix2 Detector J. Touš - Crytur Ltd., Turnov, Czech Republic J.Žemlička, J. Jakůbek – IEAP, Prague, Czech.
VERTICAL SCANNING INTERFEROMETRY VSI
Positron emission tomography without image reconstruction
Diffraction Chapter 36 Protein crystallography at SLAC, Stanford, CA
Q1.1 Find the wavelength of light used in this 2- slits interference.
Advanced Higher Physics Interference
Chapter 35-Diffraction Chapter 35 opener. Parallel coherent light from a laser, which acts as nearly a point source, illuminates these shears. Instead.
Lens Equation ( < 0 ).
Characterization of Flame Retardants in Polymers:
Theoretical consideration for x-ray phase contrast mammography
Optical Coherence Tomography
Exploring the limits of hybrid pixel detectors with MÖNCH
Really Basic Optics Instrument Sample Sample Prep Instrument Out put
Instrument Parameters in WDXRF
Application of Nuclear Physics
Institute for Applied Physics National academy of sciences of Ukraine
Kinetics of Phase Transformations
by: KHALED ALZAHRANI Liverpool John Moores University GERI
Soft X-ray Absorption and Coherence Analysis
Bi-plasma interactions on femtosecond time-scales
Resident Physics Lectures (Year 1)
Physics 1B03summer-Lecture 11
MICHELSON INTERFEROMETER
Observational Astronomy
Quiz_03 2-slits interference, Phasor, thin film interference
Complex Nanophotonics
Scanning Electron Microscopy (SEM)
Holography Traditional imaging
T. Mitsuhashi, John Flanagan G. Mitsuka
Chap. 6. Optical Properties
Presentation transcript:

C. David, IEEE Conference, Rome, 21.10.2004 Phase Contrast X-Ray Radiography and Tomography Based on a Grating Interferometer C. David, T. Weitkamp, A. Diaz Laboratory for Micro- and Nanotechnology (LMN), Paul Scherrer Institut, Switzerland F. Pfeiffer, M. Stampanoni, J.F. van der Veen Swiss Light Source (SLS), Paul Scherrer Institut, Switzerland LMN SLS C. David, IEEE Conference, Rome, 21.10.2004

X-rays for medical imaging Minimizing the radiation dose is an important issue – especially in mammography low absorption contrast => large dose required to obtain sufficiently good S/N low applied photon energy (Mo anodes) screening submits a large number of healthy patients to radiation dose C. David, IEEE Conference, Rome, 21.10.2004

C. David, IEEE Conference, Rome, 21.10.2004 Improving contrast Source Sample Detector C. David, IEEE Conference, Rome, 21.10.2004

Improving contrast Source Sample Detector efficiency, size, resolution C. David, IEEE Conference, Rome, 21.10.2004

Improving contrast Source Sample Detector spectrum, power, coherence efficiency, size, resolution C. David, IEEE Conference, Rome, 21.10.2004

Improving contrast Source Sample Detector spectrum, contrast mechanism power, coherence contrast mechanism efficiency, size, resolution C. David, IEEE Conference, Rome, 21.10.2004

Phase contrast vs. amplitude contrast n = 1 – d + ib x-rays C. David, IEEE Conference, Rome, 21.10.2004

Phase contrast vs. amplitude contrast n = 1 – d + ib x-rays C. David, IEEE Conference, Rome, 21.10.2004

Phase contrast vs. amplitude contrast n = 1 – d + ib x-rays C. David, IEEE Conference, Rome, 21.10.2004

Phase contrast vs. amplitude contrast n = 1 – d + ib x-rays Example: 20 keV Organic sample (polymer, biological, medical…) . 50 mm thickness C. David, IEEE Conference, Rome, 21.10.2004

Phase contrast vs. amplitude contrast n = 1 – d + ib x-rays Example: 20 keV Organic sample (polymer, biological, medical…) . 50 mm thickness  only 0.2 % absorption, but p- phase shift C. David, IEEE Conference, Rome, 21.10.2004

Phase contrast vs. amplitude contrast n = 1 – d + ib + x-rays Example: 20 keV Organic sample (polymer, biological, medical…) . 50 mm thickness  only 0.2 % absorption, but p- phase shift C. David, IEEE Conference, Rome, 21.10.2004

Phase contrast vs. amplitude contrast n = 1 – d + ib + x-rays Example: 20 keV Organic sample (polymer, biological, medical…) . 50 mm thickness  only 0.2 % absorption, but p- phase shift  much higher contrast  less dose required C. David, IEEE Conference, Rome, 21.10.2004

Hard x-ray interferometry detector Object Bonse-Hart Interferometer (since 1965) C. David, IEEE Conference, Rome, 21.10.2004

Hard x-ray interferometry detector Object Bonse-Hart Interferometer (since 1965) Object beam and reference beam are generated by Bragg reflections on thin Si crystals The interference of both beams gives a phase image C. David, IEEE Conference, Rome, 21.10.2004

Hard x-ray interferometry detector Object Bonse-Hart Interferometer (since 1965) optical path length difference needs to be stable to a fraction of a wavelengths picometer stability required cannot be scaled up Object beam and reference beam are generated by Bragg reflections on thin Si crystals The interference of both beams gives a phase image C. David, IEEE Conference, Rome, 21.10.2004

Propagation methods – edge contrast C. David, IEEE Conference, Rome, 21.10.2004

Propagation methods – edge contrast phase shift greatly enhances contrast of edges can be used to retrieve phase information requires high degree of transverse coherence (i.e. small source size) cannot be scaled up to large fields of view (required detector resolution) C. David, IEEE Conference, Rome, 21.10.2004

Grating x-ray interferometry 50 nm C. David, IEEE Conference, Rome, 21.10.2004

Grating x-ray interferometry beam-splitter phase grating s C. David, IEEE Conference, Rome, 21.10.2004

Grating x-ray interferometry beam-splitter phase grating s C. David, IEEE Conference, Rome, 21.10.2004

Grating x-ray interferometry beam-splitter phase grating interference pattern s C. David, IEEE Conference, Rome, 21.10.2004

Grating x-ray interferometry beam-splitter phase grating analyzer amplitude grating interference pattern camera C. David, IEEE Conference, Rome, 21.10.2004

Grating x-ray interferometry beam-splitter phase grating interference pattern analyzer amplitude grating Moiré fringes camera C. David, IEEE Conference, Rome, 21.10.2004

Grating x-ray interferometry beam-splitter phase grating analyzer amplitude grating interference pattern camera C. David, IEEE Conference, Rome, 21.10.2004

Grating x-ray interferometry beam-splitter phase grating analyzer amplitude grating interference pattern camera C. David, IEEE Conference, Rome, 21.10.2004

Grating x-ray interferometry beam-splitter phase grating analyzer amplitude grating interference pattern camera C. David, IEEE Conference, Rome, 21.10.2004

Grating x-ray interferometry beam-splitter phase grating analyzer amplitude grating interference pattern camera C. David, IEEE Conference, Rome, 21.10.2004

Grating x-ray interferometry beam-splitter phase grating analyzer amplitude grating interference pattern camera C. David, IEEE Conference, Rome, 21.10.2004

Grating x-ray interferometry beam-splitter phase grating analyzer amplitude grating interference pattern camera C. David, IEEE Conference, Rome, 21.10.2004

Grating x-ray interferometry beam-splitter phase grating analyzer amplitude grating interference pattern camera C. David, IEEE Conference, Rome, 21.10.2004

Grating x-ray interferometry beam-splitter phase grating analyzer amplitude grating interference pattern camera C. David, IEEE Conference, Rome, 21.10.2004

Grating x-ray interferometry beam-splitter phase grating analyzer amplitude grating interference pattern camera C. David, IEEE Conference, Rome, 21.10.2004

Grating x-ray interferometry beam-splitter phase grating analyzer amplitude grating interference pattern camera C. David, IEEE Conference, Rome, 21.10.2004

Grating x-ray interferometry beam-splitter phase grating analyzer amplitude grating interference pattern camera C. David, IEEE Conference, Rome, 21.10.2004

Grating x-ray interferometry beam-splitter phase grating analyzer amplitude grating interference pattern camera C. David, IEEE Conference, Rome, 21.10.2004

Grating x-ray interferometry beam-splitter phase grating analyzer amplitude grating interference pattern phase object camera C. David, IEEE Conference, Rome, 21.10.2004

Grating x-ray interferometry beam-splitter phase grating analyzer amplitude grating interference pattern phase object camera C. David, IEEE Conference, Rome, 21.10.2004

Grating x-ray interferometry beam-splitter phase grating analyzer amplitude grating interference pattern phase object camera C. David, IEEE Conference, Rome, 21.10.2004

Grating x-ray interferometry beam-splitter phase grating analyzer amplitude grating phase object interference pattern camera C. David, IEEE Conference, Rome, 21.10.2004

Grating x-ray interferometry beam-splitter phase grating analyzer amplitude grating interference pattern phase object camera C. David, IEEE Conference, Rome, 21.10.2004

Grating x-ray interferometry camera beam-splitter phase grating analyzer amplitude grating interference pattern phase object Differential phase contrast imaging! C. David, IEEE Conference, Rome, 21.10.2004

C. David, IEEE Conference, Rome, 21.10.2004 The gratings Phase grating (silicon, p = 4 µm) 4 µm 4 µm 4 µm Si-110 wet-etched Depth of structures chosen so that phase shift is π  no zeroth order C. David, IEEE Conference, Rome, 21.10.2004

C. David, IEEE Conference, Rome, 21.10.2004 The gratings Phase grating (silicon, p = 4 µm) Absorption grating (Au in silicon, q = 2 µm) 4 µm 4 µm 4 µm 4 µm 4 µm Si-110 wet-etched Depth of structures chosen so that phase shift is π  no zeroth order Au in gaps of Si grating Grown electrochemically Period is half that of the phase grating C. David, IEEE Conference, Rome, 21.10.2004

C. David, IEEE Conference, Rome, 21.10.2004 polystyrene spheres Ø 100 and 200 µm Photon energy: 12.4 keV p = 4 µm q = 2 µm BM 5, ESRF, Dec. 2002 C. David, IEEE Conference, Rome, 21.10.2004

Interferometric phase contrast Absorption contrast and edge contrast C. David, IEEE Conference, Rome, 21.10.2004

Interferometric phase contrast Absorption contrast and edge contrast Differential phase contrast C. David, IEEE Conference, Rome, 21.10.2004

Interferometric phase contrast Absorption contrast and edge contrast Differential phase contrast Phase contrast Can be integrated to yield projected phase shift of sample  Suited for tomographic reconstruction C. David, IEEE Conference, Rome, 21.10.2004

Edge contrast vs. Interferometric contrast Non-interferometric Absorption and Edge contrast 0.5mm Projection Tomogram C. David, IEEE Conference, Rome, 21.10.2004

Edge contrast vs. Interferometric contrast Non-interferometric Interferometric phase contrast Absorption and Edge contrast Phase gradient Phase 0.5mm Projection Projection Projection ID19, ESRF, June 2004 14.4 keV Tomogram Tomogram C. David, IEEE Conference, Rome, 21.10.2004

C. David, IEEE Conference, Rome, 21.10.2004 0.5mm C. David, IEEE Conference, Rome, 21.10.2004

C. David, IEEE Conference, Rome, 21.10.2004 0.5 mm 1mm C. David, IEEE Conference, Rome, 21.10.2004

C. David, IEEE Conference, Rome, 21.10.2004 0.5 mm 1mm C. David, IEEE Conference, Rome, 21.10.2004

Polychromatic radiation C. David, IEEE Conference, Rome, 21.10.2004

Polychromatic radiation beam-splitter phase grating analyzer amplitude grating phase object camera λ1 interference pattern C. David, IEEE Conference, Rome, 21.10.2004

Polychromatic radiation beam-splitter phase grating analyzer amplitude grating phase object camera λ2 λ1 interference pattern C. David, IEEE Conference, Rome, 21.10.2004

Polychromatic radiation beam-splitter phase grating analyzer amplitude grating phase object camera λ2 λ1 interference pattern C. David, IEEE Conference, Rome, 21.10.2004

Polychromatic radiation beam-splitter phase grating analyzer amplitude grating phase object camera λ2 λ1 interference pattern C. David, IEEE Conference, Rome, 21.10.2004

Pink-beam phase tomography Beam conditioning: SLS wiggler No monochromator Zr absorption filter 100 µm Camera scintillator YAG: Y absorption edge at 17.0 keV acts as high-pass filter Mean energy E = 17.5 keV Bandwidth ΔE ≈ 1 keV C. David, IEEE Conference, Rome, 21.10.2004

Pink-beam phase tomography Beam conditioning: SLS wiggler No monochromator Zr absorption filter 100 µm Camera scintillator YAG: Y absorption edge at 17.0 keV acts as high-pass filter Mean energy E = 17.5 keV Bandwidth ΔE ≈ 1 keV Sample: Three fibers Polyamide Ø 225 µm Boron Ø 200 µm, core: W Ø 10 µm PBT Ø 190 µm C. David, IEEE Conference, Rome, 21.10.2004

Pink-beam phase tomography Edge contrast Sample: Three fibers Polyamide Ø 225 µm Boron Ø 200 µm, core: W Ø 10 µm PBT Ø 190 µm C. David, IEEE Conference, Rome, 21.10.2004

Pink-beam phase tomography Edge contrast Sample: Three fibers Polyamide Ø 225 µm Boron Ø 200 µm, core: W Ø 10 µm PBT Ø 190 µm Differential phase contrast C. David, IEEE Conference, Rome, 21.10.2004

Pink-beam phase tomography Edge contrast Sample: Three fibers Polyamide Ø 225 µm Boron Ø 200 µm, core: W Ø 10 µm PBT Ø 190 µm Differential phase contrast Phase contrast C. David, IEEE Conference, Rome, 21.10.2004

Pink-beam phase tomography Edge contrast tomogram Edge contrast Sample: Three fibers Polyamide Ø 225 µm Boron Ø 200 µm, core: W Ø 10 µm PBT Ø 190 µm Phase contrast tomogram Differential phase contrast Phase contrast C. David, IEEE Conference, Rome, 21.10.2004

Pink-beam phase tomography C. David, IEEE Conference, Rome, 21.10.2004

Required transverse coherence C. David, IEEE Conference, Rome, 21.10.2004

Required transverse coherence camera d C. David, IEEE Conference, Rome, 21.10.2004

Required transverse coherence camera d In our experiments: E = 17.5 keV, => l = 0.07nm d = 28mm, => s = 1mm C. David, IEEE Conference, Rome, 21.10.2004

Required transverse coherence camera d In our experiments: E = 17.5 keV, => l = 0.07nm d = 28mm, => s = 1mm Transverse coherence length c: c = l * p/s p: source distance, e.g. 2m s: source size, e.g. 100mm C. David, IEEE Conference, Rome, 21.10.2004

Required transverse coherence camera d In our experiments: E = 17.5 keV, => l = 0.07nm d = 28mm, => s = 1mm Transverse coherence length c: c = l * p/s = 1.4mm p: source distance, e.g. 2m s: source size, e.g. 100mm C. David, IEEE Conference, Rome, 21.10.2004

C. David, IEEE Conference, Rome, 21.10.2004 Summary C. David, IEEE Conference, Rome, 21.10.2004

C. David, IEEE Conference, Rome, 21.10.2004 Summary There is a large potential to reduce the x-ray dose in medical imaging by exploiting the phase shifting property of matter rather than the absorption C. David, IEEE Conference, Rome, 21.10.2004

C. David, IEEE Conference, Rome, 21.10.2004 Summary There is a large potential to reduce the x-ray dose in medical imaging by exploiting the phase shifting property of matter rather than the absorption Grating interferometry offers advantages compared to other phase imaging methods : C. David, IEEE Conference, Rome, 21.10.2004

C. David, IEEE Conference, Rome, 21.10.2004 Summary There is a large potential to reduce the x-ray dose in medical imaging by exploiting the phase shifting property of matter rather than the absorption Grating interferometry offers advantages compared to other phase imaging methods : Robustness Quantitative method Works fine at energies suitable for mammography Requires no temporal and little spatial coherence Has potential to be scaled up to large fields of view C. David, IEEE Conference, Rome, 21.10.2004

C. David, IEEE Conference, Rome, 21.10.2004 Acknowledgments Many thanks to: At PSI E. Deckardt F. Glaus B. Haas Y. Hemmerling L. Heyderman M. Lange J. Lehmann D. Meister T. Neiger B. Nöhammer T. Rohbeck At ESRF: P. Cloetens J. Hoszowska E. Ziegler and many others ... Funding: Swiss National Science Foundation European Community C. David, IEEE Conference, Rome, 21.10.2004

Postdoc Position available Acknowledgments Many thanks to: At PSI E. Deckardt F. Glaus B. Haas Y. Hemmerling L. Heyderman M. Lange J. Lehmann D. Meister T. Neiger B. Nöhammer T. Rohbeck At ESRF: P. Cloetens J. Hoszowska E. Ziegler and many others ... Funding: Swiss National Science Foundation European Community Postdoc Position available C. David, IEEE Conference, Rome, 21.10.2004