Presentation is loading. Please wait.

Presentation is loading. Please wait.

Talbot effect in X-Ray Waveguides I. Bukreeva 1,2, A. Cedola 1, A. Sorrentino 1  F. Scarinci 1, M. Ilie 1, M. Fratini 1, and S. Lagomarsino 1 1 Istituto.

Similar presentations


Presentation on theme: "Talbot effect in X-Ray Waveguides I. Bukreeva 1,2, A. Cedola 1, A. Sorrentino 1  F. Scarinci 1, M. Ilie 1, M. Fratini 1, and S. Lagomarsino 1 1 Istituto."— Presentation transcript:

1 Talbot effect in X-Ray Waveguides I. Bukreeva 1,2, A. Cedola 1, A. Sorrentino 1  F. Scarinci 1, M. Ilie 1, M. Fratini 1, and S. Lagomarsino 1 1 Istituto di Fotonica e Nanotecnologie – CNR, Roma – Italy 2 Russian Academy of Science, P. N. Lebedev Physics Institute, Moscow, Russia Poland,Krakow 2010

2 _______________________________ _______ _______________________________ _______ I. Bukreeva, S. Lagomarsino I. Bukreeva, S. Lagomarsino Waveguides Advantages of front-coupling WG Core layer: vacuum FC WG as optics for X-ray tubes Resonant beam coupling  Resonant beam coupling Front-coupling  Front-coupling

3 _______________________________ _______ _______________________________ _______ I. Bukreeva, S. Lagomarsino I. Bukreeva, S. Lagomarsino Computer simulation Method - - Numerical solution of wave equation - - Analytical solution of wave equation Optics  Waveguide with front- coupling Source  incoherent radiation  coherent radiation

4 _______________________________ _______ _______________________________ _______ I. Bukreeva, S. Lagomarsino I. Bukreeva, S. Lagomarsino Talbot effect in periodical structures

5 _______________________________ _______ _______________________________ _______ I. Bukreeva, S. Lagomarsino I. Bukreeva, S. Lagomarsino Talbot effect. Phase gratings (phase  ) vs plane FC WGs  ) Phase grating (  ) Period D=2d=200 nm Waveguide with vacuum gap d=100 nm, =0.154 nm, R fr =1 Plane wave The interference pattern has a maximum modulation at distances X m =mD/(8 ) – fractional Talbot distance, for WG D=2d X m =mD 2 /(8 ) – fractional Talbot distance, for WG D=2d In general self image fenomenon occur in wave field composed of discrete modes WG Plane wave

6 _______________________________ _______ _______________________________ _______ I. Bukreeva, S. Lagomarsino I. Bukreeva, S. Lagomarsino Talbot effect. Phase gratings (phase  ) vs plane FC WGs Au,  nm d = 100 nm 1) Phase grating. Period D, 0.5 duty cycle and π phase shift. Diffraction pattern has half the period of the grating d=D/2 2) FC waveguide with vacuum gap d=D/2. The width of the energy distribution at odd fractional Talbot distances X T = mD eff 2 /8λ  is one half that at even distances Diffraction pattern has a maximum modulation at at fractional Talbot distances X T = mD 2 /8λ d eff ≈d+2  where   =1/k(  c-  m ) 1/2 is the penetration depth for m-th mode  WG  U 0 (y)

7 _______________________________ _______ _______________________________ _______ I. Bukreeva, S. Lagomarsino I. Bukreeva, S. Lagomarsino Talbot effect. Front coupling WGs Diffraction pattern in the far field zone The width of the energy distribution in far field zone for even fractional Talbot distances  is one half that for odd distances     dd  d  d  d  d I, a.u.   d   WG U 0 (y)

8 _______________________________ _______ _______________________________ _______ I. Bukreeva, S. Lagomarsino I. Bukreeva, S. Lagomarsino Montgomery self-imaging Talbot self-imaging (sufficient condition) Wave field with a lateral periodicity P y is periodic in longitudinal direction with period Montgomery self-imaging (necessary condition) Wave field has a longitudinal periodicity Px in direction x if the lateral components of the k vector obeys the condition x y U 0 (y) the paraxial case

9 _______________________________ _______ _______________________________ _______ I. Bukreeva, S. Lagomarsino I. Bukreeva, S. Lagomarsino 3. Lateral P y and longitudinal period P x are varied independently Montgomery self-imaging Ewald sphere 1. Wave field with lateral periodicity 2. The longitudinally periodic wave field WG with the longitudinal periodicity y x Paraxial domain Jürgen Jahns, and Adolf W. Lohmann Appl. Opt., Vol. 48, No. 18 / 20 June 2009 U 0 (y)

10 _______________________________ _______ _______________________________ _______ I. Bukreeva, S. Lagomarsino I. Bukreeva, S. Lagomarsino Multimodal WGs with longitudinal periodicity WG with longitudinal periodicity. Period P L =d eff 2 /, duty 2/3 Multimodal WG, Au,  nm,d=100 nm The energy distribution at exit apertue of the WG (red line) and WG with grating (blue line) The energy distribution at far field zone. WG (red line) and WG with grating (blue line) U 0 (y)

11 _______________________________ _______ _______________________________ _______ I. Bukreeva, S. Lagomarsino I. Bukreeva, S. Lagomarsino Multimodal WGs with longitudinal periodicity. Incoherent source. WG with grating. Period P=deff 2 / =119.9  m (39.97  m vacuum, 79.94  m Cr) d eff =109.5 nm WG Random source Propagation of the incoherent wave in the WG Random source

12 _______________________________ _______ _______________________________ _______ I. Bukreeva, S. Lagomarsino I. Bukreeva, S. Lagomarsino Conclusion 1. The field in multimode x-ray waveguides with longitudinal periodicity are studied. 2. Modal structure of WGs depends on the ratio of the lateral and longitudinal periods 3. Montgomery condition for the wave vector includes the wavelength of the x-ray radiation and therefore x-ray waveguides with longitudinal periodicity can influence on temporal frequencies of the field

13 _______________________________ _______ _______________________________ _______ I. Bukreeva, S. Lagomarsino I. Bukreeva, S. Lagomarsino Poland,Krakow 2010


Download ppt "Talbot effect in X-Ray Waveguides I. Bukreeva 1,2, A. Cedola 1, A. Sorrentino 1  F. Scarinci 1, M. Ilie 1, M. Fratini 1, and S. Lagomarsino 1 1 Istituto."

Similar presentations


Ads by Google