Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 14 The images on this CD have been lifted directly, without change or modification, from textbooks and image libraries owned by the publisher,

Similar presentations


Presentation on theme: "Chapter 14 The images on this CD have been lifted directly, without change or modification, from textbooks and image libraries owned by the publisher,"— Presentation transcript:

1 Chapter 14 The images on this CD have been lifted directly, without change or modification, from textbooks and image libraries owned by the publisher, especially from publications intended for college majors in the discipline. Consequently, they are often more richly labeled than required for our purposes. Further, dates for geological intervals may vary between images, and between images and the textbook. Such dates are regularly revised as better corroborated times are established. Your best source for current geological times is a current edition of the textbook, whose dates should be used when differences arise.

2 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display Early hominid sites  The Great Rift Valley of East Africa holds a local exposure of rocks that has yielded remarkable fossils from the early part of hominid evolution. Sites in the Great Rift Valley, especially at Olduvai Gorge, hold an exposure of rocks at the needed time horizon (several million years ago). Fossil preservation was favorable, and the site is accessible (sort of) to anthropologists.

3 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display Ape and hominid skeletons  Respectively, the backbone joins the back of the skull or bottom. The backbone is arched or S-shaped. The arms are long in both, but shorter than hindlimbs in the ape compared to the hominid. The hips are long or bowl-shaped and the femur (upper leg bone) is angled out or in.

4 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display Bipedalism  Walking comfortably on two hindlegs, bipedalism, evolved early in hominids. Many of the changes in body design and eventually in social systems derive in part from this fundamental change in posture. Some of the major branches in hominid evolution are shown.

5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display Bipedal adaptations I  In hominids, the upright, bipedal posture is derived from primates that are dependent upon a four-footed, quadrupedal posture. Such upright carriage of the body poses special problems in engineering. To accommodate this posture and stabilize it, the hominid gluteus muscles are large (balance leg swing), hips are wide (broad support), the spine curved (centers body weight, shock absorbing), and the position of the spine is beneath the skull (accommodate erect stance). (see also Bipedal adaptations II)

6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display Bipedal adaptations II  Further adaptations (see also Bipedal adaptations II) to bipedalism include a change of the big toe (hallux) from grasping in apes to striding in hominids, repositioning of the hominid knee more under the pelvis, and shortening of the hips to a broader base of support of the upper body.

7 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display Hominid evolution  Approximate times of appearance, skull design, and cultural artifacts are indicated.

8 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display Hominid relationships  Hominids generally evolved in two directions. One, a “robust” line that became extinct about 1 million years ago. The other, is the “gracile” line continuing down to modern Homo sapiens.

9 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display FIGURE 14.1 Diversity of Terrestrial Vertebrates  The width of the “balloon” expresses the relative diversity of each group. Notice that during the Mesozoic, the numbers of primitive mammals shrunk significantly compared to the predominant reptile groups of the time, which included the dinosaurs and allied groups (see also figure 13.12).

10 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display FIGURE 14.2 Goslings’ Following Behavior  Konrad Lorenz himself raised these greylag goslings from first hatching, so it was to him that they imprinted, expressing their normal behavior of following their “parent.”

11 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display FIGURE 14.3 Nature and Nurture—Speech  Human language comes in a variety of dialects, here represented as A–G. In humans, genes (nature) provide a person with the innate ability to speak a language, but the culture (nurture) into which the person is born provides the particular language learned. The final behavior is built with guidance from genes and culture.

12 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display FIGURE 14.4 Nature and Nurture—Bird Song  (a) Three calls of the male meadowlark are shown, one set produced by a freeliving individual and one produced by a hand-reared male kept isolated from ever hearing the songs of another male. The meadowlark’s genetic program is sufficient to produce normal songs. (b) The free living male chaffinch produces a complex song, but if raised in song isolation, its song is much different. If the chaffinch is exposed to the song of a tree pipit, then the chaffinch song picks up some of this vocal culture. Not only is the chaffinch genetic program insufficient to produce the normal song, but song culture (exposure to the tree pipit) can modify it. These recorded songs were played back through a sonograph to produce these visual displays of time versus frequency. ([a] is based on Lanyon 1960; [b] is based on Thorpe 1961.)

13 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display FIGURE 14.4  (continued)

14 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display Table 14.1 Classification of Primates

15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display FIGURE 14.5 Primate Relationships  Primates divide traditionally into two major groups. The prosimians tend to be small and nocturnal, including bush babies of Africa, the lemurs of Madagascar, and lorises and tarsiers of Southeast Asia. The anthropoids are more derived, including monkeys plus gibbons, apes, and hominids.

16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display FIGURE 14.8 Brachiation in Primates  Locomotion by swinging through the trees suspended from the forelimbs places special weight on the shoulders. To accommodate this, the shoulder joint is braced in the back by the broad scapula (shoulder blade) and in the front by the clavicle (collar bone). Hands are modified for grasping.

17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display FIGURE 14.9 Lucy Skeleton, Australopithecus afarensis  The lower jaw and parts of the skull survive, along with some of the arm bones, ribs, backbone, left hip and upper leg bone, and some right lower leg bones.

18 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display FIGURE 14.10 Birth Canal  Hips of the human male (a) and the human female (b). In humans, the birth of a baby with a relatively large head requires a relatively large birth canal. Note that the inner rims of the hips of a female define a larger birth canal than do those of a male.

19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display FIGURE 14.11 Hip Mechanics and Birth Canal  The larger birth canal of human females crowds the hip joint and reduces the lever advantage upon which the gluteus complex of muscles act. Consequently, these muscles are large in humans to compensate. (a) Hips of Lucy, Australopithecus afarensis. (b) Hips of human, Homo sapiens. When walking, the weight of the upper body (solid, vertical arrow) balances on the head of the femur (fulcrum, represented by a triangle) against the force produced by the gluteus complex (cross-hatched vertical arrow). Like a teeter-totter, the balancing of these is represented between the drawings. Note that the position of the fulcrum in the human (open triangle) is offset, making the action of the gluteus complex different than in Lucy (solid triangle). In humans, the enlarged birth canal and shortened “neck” of the upper leg bone, the femur, produces these mechanical differences in humans.


Download ppt "Chapter 14 The images on this CD have been lifted directly, without change or modification, from textbooks and image libraries owned by the publisher,"

Similar presentations


Ads by Google