Presentation is loading. Please wait.

Presentation is loading. Please wait.

WP3: Kinetic Monte-Carlo simulation of ZrO 2, HfO 2, Al 2 O 3 Atomic Layer Deposition onto Silicon ‘Hikad’ software user manual Hike, Final Project Review.

Similar presentations


Presentation on theme: "WP3: Kinetic Monte-Carlo simulation of ZrO 2, HfO 2, Al 2 O 3 Atomic Layer Deposition onto Silicon ‘Hikad’ software user manual Hike, Final Project Review."— Presentation transcript:

1 WP3: Kinetic Monte-Carlo simulation of ZrO 2, HfO 2, Al 2 O 3 Atomic Layer Deposition onto Silicon ‘Hikad’ software user manual Hike, Final Project Review Wednesday 19 January 2005, European Commission Offices, Brussels

2 Introduction ‘Hikad’ = simulation application ‘kmc’ + analysis application ‘anl’ Written in Fortran90 Running on Linux (kernel 2.6) Using ‘AtomEye’, free atomistic configuration viewer: http://alum.mit.edu/www/liju99/Graphics/A Ref: J. Li, Modelling Simul. Mater. Sci. Eng. 11 (2003) 173 http://alum.mit.edu/www/liju99/Graphics/A

3 Hikad algorithm Lattice-based kinetic Monte-Carlo = predefined sites and states + probability driven events Event = Mechanism + Site LKMC cycle, Occurrence of the event that has the smallest time Specific occurrence times calculation Configuration change Events Filtering

4 Hikad algorithm kmc application bloc diagram

5 Hikad algorithm anl application bloc diagram

6 Overview and Features Workspace

7

8 Overview and Features Main features ZrO 2, HfO 2 and Al 2 O 3 ALD ALD thermodynamic parameters (link with experimental data) Start from an existing atomistic configuration file (Recovery option) Initial substrate atomistic configuration customization Feedback options (log file + automatic configuration/graphic files export) Back up option Evolutivity Steric restriction switch (for big precursors) Mechanisms activation energies

9 Overview and Features Performance Huge substrates compared to ab initio or DFT Up to 10 15 events/files Improved events filtering (SmartFilter option) Shortcuts method preventing fast flip back events (SmartEvents option) Execution effectiveness analysis Analysis Simulation data analysis, even during simulation job Easy and fast browsing through events using bookmarks (find event, ALD phase, ALD cycle...) Atomistic configuration visualisation using AtomEye Snapshots (jpeg, ps or png formats) Configuration analysis (substrate, coverage, coordination...) Batch processing

10 SmartFilter SmartEvents Special Features A B All Selective Full Bloc Smart

11 Input parameters -------------------------------------------- ------------- Hike Data File ------------- -------------------------------------------- ----------- Structural Parameters ---------- Metal = Al or Zr or Hf totL = total number of rows totC = total number of columns cellparam = high-k oxide crystal lattice cell parameter (in angstroms) -------------------------------------------- ----------- MonteCarlo Parameters ---------- nu = typical lattice vibration frequency (in THz) SteRes = steric restriction switch (F/T) SmartFilter = events filtering method switch (0:full, 1:bloc, 2:smart 3:smart_devel) SmartEvents = algorithm effectiveness improvement (F/T) Stats = algorithm effectiveness measurement (F/T) -------------------------------------------- ------------ Limiting Parameters ----------- Tfin = experiment duration (in secons) nevtfin = maximum total number of events ncyclefin = desired number of ALD cycles -------------------------------------------- -------------- ALD Parameters -------------- Mprc = metallic precursor molar mass (in g/mol) curph = beginning phase T1 = (in seconds) Th1 = (in Kelvin) P1 = (in mbar) T2 = Th2 = T3 = Th3 = P3 = T4 = Th4 = --------------------------------------------

12 Input parameters -------------------------------------------- ----- Initial Configuration Parameters ----- Recovery = start using an existing atomistic configuration InitDi = Si(100)/SiO2 dimeres initialization type (RANDom, RAIL, CROSs, NO DImeres) InitOH = Si(100)/SiO2 hydroxyls initialization type (RANDom, RAIL, CROSs, Random On DImeres) pOH = percentage of hydroxyl functions on Si(100)/SiO2 surface -------------------------------------------- ------------- Feedback / Output ------------ Userfbk = user feedback (F = unattended run, T = full user control) Logfbk = log.txt feedback (F = no log.txt, T = all screen is saved in log.txt) Eventsfbk = human readable events.txt feedback (F = no events.txt, T = all events written in events.txt) Historyfbk = compact events file for off-line processing (F = no history.txt, T = all events written in history.txt) Graphfbk = cfg graphical files feedback (F = no graph, T = graph export) GraphExpTyp = lin = linear -> nex=E(Ga*kg) qud = quadratic -> nex=E(Ga*kg^2) xpn = exponential -> nex=E(Ga^kg) pha = each phase cyc = each cycle Ga = graph export parameter gsize = graph export max size Conffbk = hik configuration files feedback (F = no, T = yes) ConfExpTyp = lin = linear -> nex=E(Ga*kg) qud = quadratic -> nex=E(Ga*kg^2) xpn = exponential -> nex=E(Ga^kg) pha = each phase cyc = each cycle Gc = conf export parameter BackUp = back up option (T = create a back up directory and stores files, F = No back up) ------------- End of Data File ----------- --------------------------------------------

13 Input parameters ------ Hikad : HfO2 Mechanisms List ------ Description DeltaE 03 MeCl4 Desorption 0.48 04 HCl Production 0.88 05 H2O Desorption 0.619 06 Hydrolysis 0.916 07 HCl Recombination 0.62 08 HCl Desorption 0.12 09 Dens. Inter_CI_1N_cOH-iOH (all k) 1.5 10 Dens. Inter_CI_1N_cOH-iCl (all k) 1.5 11 Dens. Inter_CI_1N_cCl-iOH (all k) 1.5 12 Dens. Inter_CI_2N_cOH-iOH (all k not2) 1.5 13 Dens. Inter_CI_2N_cOH-iCl (all k not2) 1.5 14 Dens. Inter_CI_2N_cCl-iOH (all k not2) 1.5 15 Dens. Intra_CI_1N_cOH-iOH (k=2) 1.5 16 Dens. Intra_CI_1N_cOH-iCl (k=2) 1.5 17 Dens. Intra_CI_1N_cCl-iOH (k=2) 1.5 18 Dens. Intra_CC_1N_cOH-cOH (k=2) 1.5 19 Dens. Intra_CC_1N_cOH-cCl (k=2) 1.5 20 Dens. Intra_CC_2N_cOH-cOH (k=2) 1.5 21 Dens. Intra_CC_2N_cOH-cCl (k=2) 1.5 22 Dens. Bridge_TI_2N_tOH-iOH (k=2) 1.5 23 Dens. Bridge_TI_2N_tOH-iCl (k=2) 1.5 24 Dens. Bridge_TI_2N_tCl-iOH (k=2) 1.5 25 Dens. Bridge_TI_3N_tOH-iOH (k=2) 1.5 26 Dens. Bridge_TI_3N_tOH-iCl (k=2) 1.5 27 Dens. Bridge_TI_3N_tCl-iOH (k=2) 1.5 28 Dens. Bridge_TC_3N_tOH-cOH (k=2) 1.5 29 Dens. Bridge_TC_3N_tOH-cCl (k=2) 1.5 30 Dens. Bridge_TC_3N_tCl-cOH (k=2) 1.5 31 Dens. Bridge_TC_4N_tOH-cOH 9.0 32 Dens. Bridge_TC_4N_tOH-cCl 9.0 33 Dens. Bridge_TC_4N_tCl-cOH 9.0 34 Dens. Bridge_TT_3N_tOH-tOH (k=2) 1.5 35 Dens. Bridge_TT_3N_tOH-tCl (k=2) 1.5 36 Dens. Bridge_TT_4N_tOH-tOH 9.0 37 Dens. Bridge_TT_4N_tOH-tCl 9.0 38 Dens. Bridge_TT_5N_tOH-tOH 9.0 39 Dens. Bridge_TT_5N_tOH-tCl 9.0 40 Siloxane Bridge Opening 1.3 ------ Hike : End of Mechanisms List -----

14 Output files log.txt : program execution report *.hik files : raw atomistic configuration files InitConf.hik: first FinalConf.hik: last *.cfg files : AtomEye atomistic configuration files history.txt : events list events.txt : ‘human readable’ events list

15 Analysing simulation data

16 Reload parameters and rescan history file Display a 10 events list Current event Total number of events Delete graphics and bookmarks Browse events: find event, phase cycle, go to event Generate files Analysis tools Prompt

17 List

18 Find Looking forward for mechanism #8 occurring on any site of layer #2 Result: event found, gone to this event.

19 Batch processing For instance: batch export of graphic files Default batch parameters: export at most a 100x100 picture every one event Modified batch parameters: export at most a 100x100 picture every ALD phase

20 Batch processing 5 graphic files created:

21 Invoking AtomEye

22 Browse events and press ‘c’ to generate an AtomEye cfg file Ins/Del keys make you jump from one cfg to the previous/next one.

23 Batch coverage analysis Default batch parameters: every ALD cycle Modified batch parameters: every 500 events

24 Batch coverage analysis

25 Using Hikad: examples Substrate initialization

26 Si(100) substrate No dimeres No OH

27 Si(100) substrate Rail dimeres No OH

28 Si(100) substrate Cross dimeres No OH

29 Si(100) substrate Random dimeres No OH

30 Si(100) substrate No dimeres Rail OH

31 Si(100) substrate No dimeres Cross OH

32 Si(100) substrate No dimeres Random OH (30%)

33 Si(100) substrate No dimeres Random OH (60%)

34 Si(100) substrate Random dimeres Random OH (45%)

35 Si(100) substrate Random dimeres Random OH on dimeres (45%=>43%)

36 Using Hikad: examples Simulation running... but what is it doing now ?

37

38

39

40 Using Hikad: examples I should have set a longer hydrolysis phase...

41

42 Go to the beginning of hydrolysis phase (using +) Save this state as a hik file (using h)

43 Start a new simulation using the saved configuration (Recovery option toggled) Start with phase 3 (hydrolysis) with a longer time.

44 Conclusion Lattice based kinetic Monte-Carlo algorithm => huge configurations ALD thermodynamic parameters => link with experimental data Improved algorithm options Powerful, flexible, user-friendly analysis tool Embedded help for future development


Download ppt "WP3: Kinetic Monte-Carlo simulation of ZrO 2, HfO 2, Al 2 O 3 Atomic Layer Deposition onto Silicon ‘Hikad’ software user manual Hike, Final Project Review."

Similar presentations


Ads by Google