Presentation is loading. Please wait.

Presentation is loading. Please wait.

Technology Division INSTITUTO DE ASTROFÍSICA DE CANARIAS Luis F. Rodríguez-Ramos Instituto de Astrofísica de Canarias Canary Islands, SPAIN “Hardware Developments.

Similar presentations


Presentation on theme: "Technology Division INSTITUTO DE ASTROFÍSICA DE CANARIAS Luis F. Rodríguez-Ramos Instituto de Astrofísica de Canarias Canary Islands, SPAIN “Hardware Developments."— Presentation transcript:

1 Technology Division INSTITUTO DE ASTROFÍSICA DE CANARIAS Luis F. Rodríguez-Ramos Instituto de Astrofísica de Canarias Canary Islands, SPAIN “Hardware Developments for Fast Control Systems” OPTICON planning meeting UKATC, Edinburgh

2 Technology Division Luis F. Rodríguez-Ramos Instituto de Astrofísica de Canarias Field Programmable Gate Array (FPGA)  Started on mid-80s  Configurable logic blocks  65 nm, 550 MHz  Interface to many standards  Hundreds of I/O  Recently grown to big sizes  Started on mid-80s  Configurable logic blocks  65 nm, 550 MHz  Interface to many standards  Hundreds of I/O  Recently grown to big sizes

3 Technology Division Luis F. Rodríguez-Ramos Instituto de Astrofísica de Canarias FPGA main features  Parallelism  Speed  Low cost  Flexibility  Tiny size, low power consumption, low weight  Parallelism  Speed  Low cost  Flexibility  Tiny size, low power consumption, low weight

4 Technology Division Luis F. Rodríguez-Ramos Instituto de Astrofísica de Canarias FPGA vs µPs, DSPs, GPUs  FPGAs helped conventional processors doing interfacing, glue logic,...  FPGAs have grown to a level capable of accepting a microprocessor inside...  Traditional approach is to manufacture big quantities of a general purpose microelectronics hardware, and write a (specific) program to solve the specific task  Using FPGAs, we can get rid of any program and produce the hardware adequate for each task.  FPGAs helped conventional processors doing interfacing, glue logic,...  FPGAs have grown to a level capable of accepting a microprocessor inside...  Traditional approach is to manufacture big quantities of a general purpose microelectronics hardware, and write a (specific) program to solve the specific task  Using FPGAs, we can get rid of any program and produce the hardware adequate for each task.

5 Technology Division Luis F. Rodríguez-Ramos Instituto de Astrofísica de Canarias FPGA: Transversal key technology  Adaptive optics  Detector controllers  Phasing control for segmented mirrors  High time resolution astronomy  Lossless data compression  On-line data reduction  …  Adaptive optics  Detector controllers  Phasing control for segmented mirrors  High time resolution astronomy  Lossless data compression  On-line data reduction  …

6 Technology Division Luis F. Rodríguez-Ramos Instituto de Astrofísica de Canarias IAC Example  In-house technology development project  Examine FPGA technology and evaluate its potential for AO  Develop know-how to be used in future AO projects for astronomy and other fields ð L.F. Rodríguez Ramos et al. “FPGA adaptive optics system test bench”. Proc. SPIE 5903, 120- 128, 2005  J.G. Marichal-Hernández, L.F. Rodríguez-Ramos et al. “Atmospheric wavefront phase recovery using specialized hardware: GPUs and FPGAs”. Applied Optics 2005 Dec 10;44(35):7587-94  L.F. Rodríguez Ramos et al. “Testing FPGAs for real-time control of adaptive optics in giant telescopes ”. Proc. SPIE 6272, 2006  In-house technology development project  Examine FPGA technology and evaluate its potential for AO  Develop know-how to be used in future AO projects for astronomy and other fields ð L.F. Rodríguez Ramos et al. “FPGA adaptive optics system test bench”. Proc. SPIE 5903, 120- 128, 2005  J.G. Marichal-Hernández, L.F. Rodríguez-Ramos et al. “Atmospheric wavefront phase recovery using specialized hardware: GPUs and FPGAs”. Applied Optics 2005 Dec 10;44(35):7587-94  L.F. Rodríguez Ramos et al. “Testing FPGAs for real-time control of adaptive optics in giant telescopes ”. Proc. SPIE 6272, 2006

7 Technology Division Luis F. Rodríguez-Ramos Instituto de Astrofísica de Canarias Project team  People Luis F. Rodriguez RamosPI & PM Teodora VieraControl Algorithm José V. GiganteCamera I/F, displays and centroid computation Fernando GagoFrame grabbing Guillermo HerreraDACs I/F Angel AlonsoOptics Nicolas DescharmesOptics  Budget 4000 man-hours (~2 man-yr) 25 K€ ($30 K)  People Luis F. Rodriguez RamosPI & PM Teodora VieraControl Algorithm José V. GiganteCamera I/F, displays and centroid computation Fernando GagoFrame grabbing Guillermo HerreraDACs I/F Angel AlonsoOptics Nicolas DescharmesOptics  Budget 4000 man-hours (~2 man-yr) 25 K€ ($30 K)

8 Technology Division Luis F. Rodríguez-Ramos Instituto de Astrofísica de Canarias Experimental setup D1 L1 D2 TS ATM BS1 50/50 BS2 50/50 NDF MMDM L2 L3 D3 L4LA SC SHC MO LS

9 Technology Division Luis F. Rodríguez-Ramos Instituto de Astrofísica de Canarias Electronic system setup

10 Technology Division Luis F. Rodríguez-Ramos Instituto de Astrofísica de Canarias Electronic system setup

11 Technology Division Luis F. Rodríguez-Ramos Instituto de Astrofísica de Canarias FPGA occupancy example  Image recomposing1%  Centroid calculation35%  Matrix computation3%  Linearization6%  PI control2%  Display14%  Housekeeping9%  TOTAL70%  Image recomposing1%  Centroid calculation35%  Matrix computation3%  Linearization6%  PI control2%  Display14%  Housekeeping9%  TOTAL70%

12 Technology Division Luis F. Rodríguez-Ramos Instituto de Astrofísica de Canarias Results I frames, centroids and actuation Last two rows and actuation Frame clock centroids correction

13 Technology Division Luis F. Rodríguez-Ramos Instituto de Astrofísica de Canarias Results II Servo OFF Switching voltage pattern added to the first ring of actuators (7) 64 errors in X Servo ON 39 actuators

14 Technology Division Luis F. Rodríguez-Ramos Instituto de Astrofísica de Canarias Joint development proposed  Astronomy related building blocks  Practical System prototype  Astronomy related building blocks  Practical System prototype

15 Technology Division Luis F. Rodríguez-Ramos Instituto de Astrofísica de Canarias Building blocksdevelopment  Never start from scratch: Lots of commercially available IP Cores plus...  Astronomy related building blocks, to be developed in a joint effort and made available to the community.  Previous work needed in  Block identifying,  Common development methodology,  Agreeing interfaces  Synthesis software evaluation  …  Never start from scratch: Lots of commercially available IP Cores plus...  Astronomy related building blocks, to be developed in a joint effort and made available to the community.  Previous work needed in  Block identifying,  Common development methodology,  Agreeing interfaces  Synthesis software evaluation  …

16 Technology Division Luis F. Rodríguez-Ramos Instituto de Astrofísica de Canarias Building block examples  FFT (2D and multi-D)  Centroid computation  Image correlation  Gaussian fitting  Sparse Matrix  Floating point arithmetic  Camera interface  Inter-boards and intra-board communication  Detector pre-processing (Flat, slope, cosmetics…)  Lossless data compression  Intersystem Synchronization ...  FFT (2D and multi-D)  Centroid computation  Image correlation  Gaussian fitting  Sparse Matrix  Floating point arithmetic  Camera interface  Inter-boards and intra-board communication  Detector pre-processing (Flat, slope, cosmetics…)  Lossless data compression  Intersystem Synchronization ...

17 Technology Division Luis F. Rodríguez-Ramos Instituto de Astrofísica de Canarias ELT AO Prototype  Massively parallel FPGA-only system capable of implementing all the aspects of the adaptive optics of a giant telescope, including multi-guide star atmospheric tomography  ELT simulation optical bench  Hardware Processing engine (subcontract)  AO Algorithm reformulation  AO Prototype simulation  AO Prototype laboratory tests  Telescope tests at OGS(1m) + WHT(4,2) + GTC(10m)  Massively parallel FPGA-only system capable of implementing all the aspects of the adaptive optics of a giant telescope, including multi-guide star atmospheric tomography  ELT simulation optical bench  Hardware Processing engine (subcontract)  AO Algorithm reformulation  AO Prototype simulation  AO Prototype laboratory tests  Telescope tests at OGS(1m) + WHT(4,2) + GTC(10m)

18 Technology Division Luis F. Rodríguez-Ramos Instituto de Astrofísica de Canarias Work breakdown and schedule

19 Technology Division Luis F. Rodríguez-Ramos Instituto de Astrofísica de Canarias Cost idea  Coordination:20.000 €/y  Man-power:200.000 €/y  Subcontracts:50.000 €  TOTAL approx:1.2 M€  Coordination:20.000 €/y  Man-power:200.000 €/y  Subcontracts:50.000 €  TOTAL approx:1.2 M€

20 Technology Division Luis F. Rodríguez-Ramos Instituto de Astrofísica de Canarias Thank you


Download ppt "Technology Division INSTITUTO DE ASTROFÍSICA DE CANARIAS Luis F. Rodríguez-Ramos Instituto de Astrofísica de Canarias Canary Islands, SPAIN “Hardware Developments."

Similar presentations


Ads by Google