Presentation is loading. Please wait.

Presentation is loading. Please wait.

Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, 16 24 September 2009, Erice, Sicily Crab.

Similar presentations


Presentation on theme: "Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, 16 24 September 2009, Erice, Sicily Crab."— Presentation transcript:

1 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Crab Nebula Neutrinos in Cosmology, Astro, Particle & Nuclear Physics September 2009, Erice, Sicily Physics Opportunities with Supernova Neutrinos Georg Raffelt, Max-Planck-Institut für Physik, München

2 Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Helium-burning star HeliumBurning HydrogenBurning Main-sequence star Hydrogen Burning Onion structure Degenerate iron core: 10 9 g cm g cm 3 T K T K M Fe 1.5 M sun M Fe 1.5 M sun R Fe 8000 km R Fe 8000 km Collapse (implosion) Stellar Collapse and Supernova Explosion

3 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Collapse (implosion) Explosion Newborn Neutron Star ~ 50 km Proto-Neutron Star nuc g cm 3 nuc g cm 3 T 30 MeV NeutrinoCooling Stellar Collapse and Supernova Explosion

4 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Newborn Neutron Star ~ 50 km Proto-Neutron Star nuc g cm 3 nuc g cm 3 T 30 MeV NeutrinoCooling Gravitational binding energy Gravitational binding energy E b erg 17% M SUN c 2 E b erg 17% M SUN c 2 This shows up as This shows up as 99% Neutrinos 99% Neutrinos 1% Kinetic energy of explosion 1% Kinetic energy of explosion (1% of this into cosmic rays) (1% of this into cosmic rays) 0.01% Photons, outshine host galaxy 0.01% Photons, outshine host galaxy Neutrino luminosity Neutrino luminosity L erg / 3 sec L erg / 3 sec L SUN L SUN While it lasts, outshines the entire While it lasts, outshines the entire visible universe visible universe Stellar Collapse and Supernova Explosion

5 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Diffuse Supernova Neutrino Background (DSNB) Supernova rate approximately Supernova rate approximately 1 SN / L Sun,B / 100 years 1 SN / L Sun,B / 100 years L sun,B = 0.54 L sun = erg/s L sun,B = 0.54 L sun = erg/s E ~ erg per core-collapse E ~ erg per core-collapse Core-collapse neutrino luminosity of typical galaxy comparable to photon luminosity (from nuclear burning) Core-collapse rate somewhat larger in the past. Estimated present-day flux ~ 10 cm 2 s 1 flux ~ 10 cm 2 s 1 Beacom & Vagins, hep-ph/ [Phys. Rev. Lett., 93:171101, 2004] Pushing the boundaries of neutrino astronomy to cosmological distances

6 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Realistic DSNB Estimate Horiuchi, Beacom & Dwek, arXiv: v3

7 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Sanduleak Large Magellanic Cloud Distance 50 kpc ( light years) Tarantula Nebula Supernova 1987A 23 February 1987 Supernova 1987A 23 February 1987

8 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Neutrino Signal of Supernova 1987A Within clock uncertainties, signals are contemporaneous Kamiokande-II (Japan) Water Cherenkov detector 2140 tons Clock uncertainty 1 min Irvine-Michigan-Brookhaven (US) Water Cherenkov detector 6800 tons Clock uncertainty 50 ms Baksan Scintillator Telescope (Soviet Union), 200 tons Random event cluster ~ 0.7/day Clock uncertainty +2/-54 s

9 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily 2002 Physics Nobel Prize for Neutrino Astronomy Ray Davis Jr. ( ) Masatoshi Koshiba (*1926) for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos particular for the detection of cosmic neutrinos

10 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Gamow & Schoenberg, Phys. Rev. 58:1117 (1940)

11 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Large Detectors for Supernova Neutrinos Super-Kamiokande (10 4 ) KamLAND (400) MiniBooNE(200) In brackets events for a fiducial SN at distance 10 kpc LVD (400) Borexino (100) IceCube (10 6 ) Baksan Baksan (100) (100)

12 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Current and Near-Future SN Neutrino Detectors DetectorTypeLocationMass (kton) 8 kpc Status Super-KWaterJapan328000Running (SK IV) LVDScintillatorItaly1300Running KamLANDScintillatorJapan1300Running BorexinoScintillatorItaly0.3100Running IceCubeIceSouth Pole0.4/PMT1 millionRunning BaksanScintillatorRussia0.3350Running Mini-BOONEScintillatorUSA0.7200Running HALOLeadCanada Under construction IcarusLiquid argonItaly0.6230Almost ready NO A ScintillatorUSA153000Construction started SNO+ScintillatorCanada1300Funded Adapted from Kate Scholberg, TAUP 2009

13 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Super-Kamiokande Neutrino Detector

14 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Simulated Supernova Burst in Super-Kamiokande Movie by C. Little, including work by S. Farrell & B. Reed, (Kate Scholbergs group at Duke University)

15 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily IceCube Neutrino Telescope at the South Pole 1 km 3 antarctic ice, instrumented 1 km 3 antarctic ice, instrumented with 4800 photomultipliers with 4800 photomultipliers 59 of 80 strings installed (2009) 59 of 80 strings installed (2009) Completion until 2011 foreseen Completion until 2011 foreseen

16 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily IceCube as a Supernova Neutrino Detector Each optical module (OM) picks up Cherenkov light from its neighborhood. SN appears as correlated noise. About 300 About 300 Cherenkov Cherenkov photons photons per OM per OM from a SN from a SN at 10 kpc at 10 kpc Noise Noise per OM per OM ~280 Hz ~280 Hz Total of Total of 4800 OMs 4800 OMs foreseen foreseen in IceCube in IceCube IceCube SN signal at 10 kpc, based on a numerical Livermore model [Dighe, Keil & Raffelt, hep-ph/ ] Method first discussed by Pryor, Roos & Webster, Pryor, Roos & Webster, ApJ 329:355 (1988) ApJ 329:355 (1988) Halzen, Jacobsen & Zas Halzen, Jacobsen & Zas astro-ph/ astro-ph/

17 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Galactic Supernova Distance Distribution Mirizzi,Raffelt,Serpico,astro-ph Average distance 10.7 kpc, rms dispersion 4.9 kpc (11.9 kpc and 6.0 kpc for SN Ia distribution)

18 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily The Red Supergiant Betelgeuse (Alpha Orionis) First resolved image of a star other than Sun Distance(Hipparcos) 130 pc (425 lyr) If Betelgeuse goes Supernova: neutrino events in Super-Kamiokande neutrino events in Super-Kamiokande neutron events per day from Silicon-burning phase neutron events per day from Silicon-burning phase (few days warning!), need neutron tagging (few days warning!), need neutron tagging [Odrzywolek, Misiaszek & Kutschera, astro-ph/ ] [Odrzywolek, Misiaszek & Kutschera, astro-ph/ ]

19 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Local Group of Galaxies Current best neutrino detectors sensitive out to few 100 kpc With megatonne class (30 x SK) 60 events from Andromeda

20 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Next Generation Large-Scale Detector Concepts Memphys Hyper-K DUSEL LBNE Megaton-scale water Cherenkov kton liquid Argon 100 kton scale scintillator scintillator LENAHanoHano

21 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Reaching Beyond the Milky Way: Five-Megaton Detector Modular 5-Mt underwater detector for proton decay, long-baseline oscillation experiments, atmospheric neutrinos, and low-energy burst detection

22 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Looking forward Galactic Supernova Rate

23 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Core-Collapse SN Rate in the Milky Way Gamma rays from 26 Al (Milky Way) Historical galactic SNe (all types) SN statistics in external galaxies No galactic neutrino burst since 1980 Core-collapse SNe per century van den Bergh & McClure (1994) Cappellaro & Turatto (2000) Diehl et al. (2006) Tammann et al. (1994) Strom (1994) 90 % CL (25 y obserservation) Alekseev et al. (1993) References: van den Bergh & McClure, ApJ 425 (1994) 205. Cappellaro & Turatto, astro- ph/ Diehl et al., Nature 439 (2006) 45. Strom, Astron. Astrophys. 288 (1994) L1. Tammann et al., ApJ 92 (1994) 487. Alekseev et al., JETP 77 (1993) 339 and my update.

24 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Observed SNe in the Local Universe (Past Decade) Kistler,Yüksel, Ando, Beacom & Suzuki, arXiv: StatisticalPrediction

25 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily High and Low Supernova Rates in Nearby Galaxies M31 (Andromeda) D = 780 kpc Last Observed Supernova: 1885A NGC 6946 D = (5.5 ± 1) Mpc Observed Supernovae: 1917A, 1939C, 1948B, 1968D, 1969P, 1980K, 2002hh, 2004et, 2008S

26 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily SuperNova Early Warning System (SNEWS) Neutrino observation can alert astronomers several hours in advance to a supernova. BNL Super-K Alert Others ? LVD IceCube Supernova 1987A Early Light Curve

27 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Looking forward Probing Supernova Physics

28 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Delayed Explosion Wilson, Proc. Univ. Illinois Meeting on Num. Astrophys.(1982) Bethe & Wilson, ApJ 295 (1985) 14

29 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Standing Accretion Shock Instability (SASI) Mezzacappa et al.,

30 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Luminosity Variation Detectable in Neutrinos? Marek, Janka & Müller, arXiv: Hemispheric averagePolar direction Neutrino events in 10 ms bins for SN (10 kpc) during accretion phase: Super-K 70 1 ~ 10% Super-K 70 1 ~ 10% 30 x Super-K ~ 2% 30 x Super-K ~ 2% IceCube ~ 1% IceCube ~ 1% Detecting the spectrum of luminosity variations can Detect SASI instability in neutrinos Detect SASI instability in neutrinos Provide equation-of-state Provide equation-of-state information information

31 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Fourier Transform of Luminosity Variation Marek, Janka & Müller, arXiv: Approximate level of Poisson noise in IceCube for a SN at 10 kpc Hemispheric average Polar direction Detectability to be studied in more detail (Lund, Marek, Lunardini, Janka, Raffelt, Work in progress)

32 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Signal dispersion for Next Nearby SN Neutrino Mass and Resolution of Time Variations IceCube binning of data: 1.64 ms in each OM IceCube binning of data: 1.64 ms in each OM Laboratory neutrino mass limit: 2.2 eV Laboratory neutrino mass limit: 2.2 eV Cosmological limit m < 0.6 eV, so individual mass limit 0.2 eV Cosmological limit m < 0.6 eV, so individual mass limit 0.2 eV KATRIN sensitivity roughly 0.2 eV KATRIN sensitivity roughly 0.2 eV For SN signal interpretation of fast time variations, it is important to have the cosmological limit and future KATRIN measurement/limit Supernova neutrino aficionados are new customers for KATRIN results!

33 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Gravitational Waves from Core-Collapse Supernovae Müller, Rampp, Buras, Janka, & Shoemaker, Müller, Rampp, Buras, Janka, & Shoemaker, Towards gravitational wave signals from Towards gravitational wave signals from realistic core collapse supernova models, realistic core collapse supernova models, astro-ph/ astro-ph/ The gravitational-wave signal from convection is a generic and dominating feature Bounce Convection Asymmetric neutrino emission

34 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Neutrino Emission Around Bounce Time Different Mass Neutrino Transport Nuclear EoS Kachelriess, Tomàs, Buras, Janka, Marek & Rampp, astro-ph/ PromptNeutronizationBurst

35 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Millisecond Bounce Time Reconstruction Super-KamiokandeIceCube Halzen & Raffelt arXiv: Onset of neutrino emission Pagliaroli, Vissani, Coccia & Fulgione arXiv: Emission model adapted to Emission model adapted to measured SN 1987A data measured SN 1987A data Pessimistic distance of 20 kpc Pessimistic distance of 20 kpc Determine bounce time to within Determine bounce time to within a few tens of milliseconds a few tens of milliseconds 10 kpc

36 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Do Neutrinos Gravitate? Neutrinos arrive a few hours earlier than photons Early warning (SNEWS) SN 1987A: Transit time for photons and neutrinos equal to within ~ 3h Equal within ~ Shapiro time delay for particles moving in a gravitational potential Longo, PRL 60:173,1988 Krauss & Tremaine, PRL 60:176,1988 Proves directly that neutrinos respond to gravity in the usual way Proves directly that neutrinos respond to gravity in the usual way because for photons gravitational lensing already proves this point because for photons gravitational lensing already proves this point Cosmological limits N 1 much worse test of neutrino gravitation Cosmological limits N 1 much worse test of neutrino gravitation Provides limits on parameters of certain non-GR theories of gravitation Provides limits on parameters of certain non-GR theories of gravitation

37 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Looking forward Particle Physics Bounds

38 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily The Energy-Loss Argument Neutrinosphere Neutrino Neutrino diffusion diffusion Late-time signal most sensitive observable Emission of very weakly interacting particles would steal energy from the neutrino burst and shorten it. (Early neutrino burst powered by accretion, not sensitive to volume energy loss.) not sensitive to volume energy loss.) Volume emission Volume emission of novel particles of novel particles SN 1987A neutrino signal

39 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily New Long-Term Cooling Calculations Fischer et al. (Basel Group), arXiv:

40 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Looking forward Neutrino Flavor Oscillations

41 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Neutrino Emission Around Bounce Time Different Mass Neutrino Transport Nuclear EoS Kachelriess, Tomàs, Buras, Janka, Marek & Rampp, astro-ph/ PromptNeutronizationBurst

42 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Flavor Dependence of Neutrino Emission Fischer et al. (Basel Group), arXiv:

43 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Flavor-Dependent Neutrino Fluxes vs. Equation of State Kitaura, Janka & Hillebrandt, Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous Type II-P supernovae, astro-ph/ Wolff & Hillebrandt nuclear EoS (stiff)Lattimer & Swesty nuclear EoS (soft)

44 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Level-Crossing Diagram in a SN Envelope Dighe & Smirnov, Identifying the neutrino mass spectrum from a supernova neutrino burst, astro-ph/ Normal mass hierarchy Inverted mass hierarchy

45 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Spectra Emerging from a Supernova Primary fluxes Primary fluxes for for for After leaving the After leaving the supernova envelope, supernova envelope, the fluxes are the fluxes are partially swapped partially swapped Normal Normal Inverted Inverted sin 2 (2 13 ) Any Any Mass ordering sin 2 ( 12 ) 0 cos 2 ( 12 ) sin 2 ( 12 ) cos 2 ( 12 ) 0 Case A B C Survival probability

46 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Collective Effects in Neutrino Flavor Oscillations Collapsed supernova core or accretion torus of merging neutron stars: Neutrino flux very dense: Up to cm 3 Neutrino flux very dense: Up to cm 3 Neutrino-neutrino interaction energy Neutrino-neutrino interaction energy much larger than vacuum oscillation frequency much larger than vacuum oscillation frequency Large matter effect of neutrinos on each Large matter effect of neutrinos on each other other Non-linear oscillation effects Non-linear oscillation effects Assume 80% anti-neutrinos Assume 80% anti-neutrinos Vacuum oscillation frequency Vacuum oscillation frequency = 0.3 km 1 = 0.3 km 1 Neutrino-neutrino interaction Neutrino-neutrino interaction energy at nu sphere (r = 10 km) energy at nu sphere (r = 10 km) = km 1 = km 1 Falls off approximately as r 4 Falls off approximately as r 4 (geometric flux dilution and nus (geometric flux dilution and nus become more co-linear) become more co-linear)

47 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Collective SN Neutrino Oscillations since 2006 Two seminal papers in 2006 triggered a torrent of activities Duan, Fuller, Qian, astro-ph/ , Duan et al. astro-ph/ Duan, Fuller, Carlson & Qian, astro-ph/ , , arXiv: , Duan, Fuller & Qian, arXiv: , , Duan, Fuller & Carlson, arXiv: Duan & Kneller, arXiv: Hannestad, Raffelt, Sigl & Wong, astro-ph/ Balantekin & Pehlivan, astro-ph/ Balantekin, Gava & Volpe, arXiv: Gava & Volpe, arXiv: Gava, Kneller, Volpe & McLaughlin, arXiv: Raffelt & Sigl, hep-ph/ Raffelt & Smirnov, arXiv: , Esteban-Pretel, Pastor, Tomàs, Raffelt & Sigl, arXiv: , Esteban-Pretel, Mirizzi, Pastor, Tomàs, Raffelt, Serpico & Sigl, arXiv: Raffelt, arXiv: Fogli, Lisi, Marrone & Mirizzi, arXiv: Fogli, Lisi, Marrone & Tamborra, arXiv: , Lunardini, Müller & Janka, arXiv: Dasgupta & Dighe, arXiv: Dasgupta, Dighe & Mirizzi, arXiv: Dasgupta, Dighe, Mirizzi & Raffelt, arXiv: , Dasgupta, Dighe, Raffelt & Smirnov, arXiv: Sawyer, arXiv: Chakraborty, Choubey, Dasgupta & Kar, arXiv: Blennow, Mirizzi & Serpico, arXiv: Wei Liao, arXiv: ,

48 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily General Equations of Motion Usual matter effect with Vacuum oscillations Vacuum oscillations M is neutrino mass matrix M is neutrino mass matrix Note opposite sign between Note opposite sign between neutrinos and antineutrinos neutrinos and antineutrinos Nonlinear nu-nu effects are important when nu-nu interaction energy exceeds typical vacuum oscillation frequency (Do not compare with matter effect!)

49 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Oscillations of Neutrinos plus Antineutrinos in a Box Equal and densities, single energy E, with Equal self terms Opposite vacuum oscillations Pendulum in flavor space Inverted mass hierarchy Inverted mass hierarchy Inverted pendulum Inverted pendulum Unstable even for small mixing angle Unstable even for small mixing angle Normal mass hierarchy Normal mass hierarchy Small-amplitude oscillations Small-amplitude oscillations

50 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Flavor Conversion in Toy Supernova Pendular Oscillations Assume 80% anti-neutrinos Assume 80% anti-neutrinos Vacuum oscillation frequency Vacuum oscillation frequency = 0.3 km 1 = 0.3 km 1 Neutrino-neutrino interaction Neutrino-neutrino interaction energy at nu sphere (r = 10 km) energy at nu sphere (r = 10 km) = km 1 = km 1 Falls off approximately as r 4 Falls off approximately as r 4 (geometric flux dilution and nus (geometric flux dilution and nus become more co-linear) become more co-linear) Decline of oscillation amplitude explained in pendulum analogy by inreasing moment of inertia (Hannestad, Raffelt, Sigl & Wong astro-ph/ ) astro-ph/ )

51 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Spectral Split for Accretion Phase Example Fogli et al., arXiv: , Initial fluxes at nu sphere Aftercollectivetrans-formation For explanation see Raffelt & Smirnov arXiv: Duan, Fuller, Carlson & Qian arXiv:

52 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Multiple Spectral Splits (Cooling-Phase Example) Dasgupta, Dighe, Raffelt & Smirnov, arXiv: Inverted Hierarchy Normal Hierarchy

53 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Multiple Spectral Splits in the Variable Dasgupta, Dighe, Raffelt & Smirnov, arXiv: arXiv: Given is the flux spectrum f(E) for each flavor Use m 2 /2E to label modes Label anti-neutrinos with antineutrinosneutrinos Define spectrum as Neutrinos Antineutrinos Swaps develop around every positive spectral crossing Each swap flanked by two splits

54 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Flavor Pendulum Dasgupta, Dighe, Raffelt & Smirnov, arXiv: For movies see Single positive crossing (potential energy at a maximum) Single negative crossing (potential energy at a minimum)

55 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Decreasing Neutrino Density Certain initial neutrino density Four times smaller initial neutrino density Dasgupta, Dighe, Raffelt & Smirnov, arXiv: For movies see

56 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Supernova Cooling-Phase Example Normal Hierarchy Inverted Hierarchy Dasgupta, Dighe, Raffelt & Smirnov, arXiv: For movies see

57 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Multiple Spectral Splits (Cooling-Phase Example) Dasgupta, Dighe, Raffelt & Smirnov, arXiv: Inverted Hierarchy Normal Hierarchy

58 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Questions and Opportunities Self-induced collective oscillations occur even Self-induced collective oscillations occur even for very small 13-mixing (instability!) for very small 13-mixing (instability!) Do matter-density fluctuations have any Do matter-density fluctuations have any realistic impact? realistic impact? Theoretical understanding and role of Theoretical understanding and role of multi-angle effects largely missing multi-angle effects largely missing Observation of spectral split or swap indication Observation of spectral split or swap indication can provide signature for mass hierarchy can provide signature for mass hierarchy and nontrivial neutrino propagation dynamics and nontrivial neutrino propagation dynamics

59 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Spectral Split (Accretion-Phase Example) Fogli, Lisi, Marrone & Mirizzi, arXiv: Initial fluxes at neutrino sphere Aftercollectivetrans-formation For explanation see Raffelt & Smirnov arXiv: Duan, Fuller, Carlson & Qian arXiv:

60 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Distinguishing Mixing Scenarios Hierarchy sin 2 13 Survival Probability Eartheffects Normal Normal Inverted Inverted cos 2 12 Normal Normal Inverted Inverted sin E < E split E > E split 0 0 Assuming standard flux spectra leading to a single split Assuming standard flux spectra leading to a single split Probably generic for accretion phase Probably generic for accretion phase Adapted from Dighe, arXiv:

61 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Mass Hierarchy at Extremely Small Theta-13 Dasgupta, Dighe & Mirizzi, arXiv: Ratio of spectra in two water Cherenkov detectors (0.4 Mton), one shadowed by the Earth, the other not Using Earth matter effects to diagnose transformations

62 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Diagnosing Collective Transformations Hierarchy sin 2 13 survival survivalprobability Normal Normal Inverted Inverted cos 2 12 Normal Normal Inverted InvertedNo Earth Eartheffects survival survivalprobability Earth Eartheffects 0 Yes cos No Yes Yes Collective Transformations NoYes Assuming the mass ordering is measured to be inverted in the lab, the presence or absence of Earth effects distinguishes between the presence or not of collective transformations

63 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Looking forward What exactly will be learnt from the neutrinos of the next nearby SN depends a lot on what exactly is observed

64 Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, September 2009, Erice, Sicily Looking forward SN neutrinos are powerful astrophysical and particle-physics messengers


Download ppt "Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, 16 24 September 2009, Erice, Sicily Crab."

Similar presentations


Ads by Google