Presentation is loading. Please wait.

Presentation is loading. Please wait.

Energy Level Diagrams E

Similar presentations


Presentation on theme: "Energy Level Diagrams E"— Presentation transcript:

1 Energy Level Diagrams E
Hund’s rule – e- half-fill each orbital in a sublevel before pairing up 6s Pictorial representation of electron distribution in orbitals 5p 4d Aufbau principle – e- occupy the lowest energy orbital available p. 188 in text 5s 4p Pauli exclusion principle – max 2 e- per orbital (spin up and spin down) 3d E 4s 3p 3s 2p 2s n = 1 l = 0 ml = 0 ms = -½ 1s

2 Orbitals Being Filled Groups 1 8 2 1s 1 3 4 5 6 7 1s 2s 2 2p 3 3s 3p
1s 2s 2 2p 3 3s 3p Periods 4s 3d 4p 4 4d 5p 5 5s La 5d 6p 6 6s Ac 6d 7 7s 4f Lanthanide series 5f Actinide series Zumdahl, Zumdahl, DeCoste, World of Chemistry 2002, page 345

3 Anions - Add e- to lowest energy sublevel available.
Energy Level Diagrams 6s 5p 4d 5s 4p 3d E 4s 3p 3s Cl- 2p 2s Anions - Add e- to lowest energy sublevel available. 1s

4 Cations - Remove e- from sublevel with highest value of n.
Energy Level Diagrams 6s 5p 4d 5s 4p Cations - Remove e- from sublevel with highest value of n. 3d E 4s 3p 3s Sr2+ 2p 2s 1s

5 Cations - Remove e- from sublevel with highest value of n.
Energy Level Diagrams 6s 5p 4d 5s 4p Cations - Remove e- from sublevel with highest value of n. 3d E 4s 3p 3s Fe2+ and Fe3+ 2p 2s 1s

6 Energy Level Diagram of a Many-Electron Atom
6s p d f 5s p d 4s p d Arbitrary Energy Scale 3s p 2s p 1s NUCLEUS O’Connor, Davis, MacNab, McClellan, CHEMISTRY Experiments and Principles 1982, page 177

7 Orbital Diagrams for Nickel
28 1s 2s 2p 3s 3p 4s 3d 2s 2p 3s 3p 4s 3d 1s Excited State 2s 2p 3s 3p 4s 3d 1s Pauli Exclusion 2s 2p 3s 3p 4s 3d 1s Hund’s Rule

8 Homework p. 191 #3alt,4 p. 197 #5

9 The Periodic Table * Y * Lanthanides Y Actinides Alkaline H He Li Be B
Noble gases Alkaline earth metals Halogens 1 18 H 1 He 2 2 13 14 15 16 17 Li 3 Be 4 B 5 C 6 N 7 O 8 F 9 Ne 10 Na 11 Mg 12 3 4 5 6 7 8 9 10 11 12 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 Transition metals K 19 Ca 20 Sc 21 Ti 22 V 23 Cr 24 Mn 25 Fe 26 Co 27 Ni 28 Cu 29 Zn 30 Ga 31 Ge 32 As 33 Se 34 Br 35 Kr 36 Alkali metals Rb 37 Sr 38 Y 39 Zr 40 Nb 41 Mo 42 Tc 43 Ru 44 Rh 45 Pd 46 Ag 47 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 * Hf 72 Ta 73 W 74 Re 75 Os 76 Ir 77 Pt 78 Au 79 Hg 80 Tl 81 Pb 82 Bi 83 Po 84 At 85 Rn 86 Fr 87 Ra 88 Y Rf 104 Db 105 Sg 106 Bh 107 Hs 108 Mt 109 Uun 110 Uuu 111 Uub 112 Uuq 113 Uuh 116 Uuo 118 * Lanthanides La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 Gd 64 Tb 65 Dy 66 Ho 67 Er 68 Tm 69 Yb 70 Lu 71 Y Actinides Ac 89 Th 90 Pa 91 U 92 Np 93 Pu 94 Am 95 Cm 96 Bk 97 Cf 98 Es 99 Fm 100 Md 101 No 102 Lr 103

10

11 Electron Configuration
H 1s1 Ca 1s22s22p63s23p64s2 Pb 1s22s22p63s23p64s23d104p65s24d105p66s24f145d106p2 Cl- 1s22s22p63s23p6 Fe2+ 1s22s22p63s23p63d6 Fe3+ 1s22s22p63s23p63d5 Ca [Ar]4s2 Cl- [Ar] Fe2+ [Ar]3d6 Shorthand: [noble gas]

12 Electron Filling in Periodic Table
s s p 1 2 d 3 K 4s1 Ca 4s2 Sc 3d1 Ti 3d2 V 3d3 Cr 3d5 Cr 3d4 Cu 3d9 Mn 3d5 Fe 3d6 Co 3d7 Ni 3d8 Cu 3d10 Zn 3d10 Ga 4p1 Ge 4p2 As 4p3 Se 4p4 Br 4p5 Kr 4p6 4 Cr 4s13d5 Cu 4s13d10 4f 4d n = 4 4p 3d Cr 4s13d5 4s n = 3 3p Energy 3s 4s 3d 2p n = 2 2s Cu 4s13d10 n = 1 1s 4s 3d

13 Homework p. 194 #6-11 p. 197 #1,2,6-10,13

14 Anomalous e- Configurations

15 Ferromagnetic – Fe, Co and Ni are smaller, closely packed atoms able to orient themselves in a magnetic field (group of these atoms oriented in the same direction – domain theory) , explains full magnetism

16 Paramagnetism – substances exhibit a weak magnetic attraction
 believed to be caused by the presence of unpaired electrons Q: Which substances containing calcium, zinc, copper (II) and manganese(II) ions are paramagnetic? CaSO4(s) ZnSO4(s) CuSO4(s) MnSO4(s)

17 Quantum Challenge The arrangement of elements in the periodic table is a direct consequence of the allowed values for the four quantum numbers. If the laws of physics allowed these numbers to have different values, the appearance of the periodic table would change. Suppose, in a different universe, the quantum number ml has the allowed values of ml = 0,1,…+l. All other allowed values are unchanged so the set of allowed values is: n = 1,2,3… l = 0,1,2…n-1 ml = 0,1…+l ms = ½,-½

18 Task: Design the periodic table for the first 30 elements.
Label the s,p and d block elements. Shade or colour the noble gas-like elements. Show your work!!


Download ppt "Energy Level Diagrams E"

Similar presentations


Ads by Google