Presentation is loading. Please wait.

Presentation is loading. Please wait.

Periodic Table.

Similar presentations


Presentation on theme: "Periodic Table."— Presentation transcript:

1 Periodic Table

2 The first periodic table?

3 Discovering the Periodic Table
Ne Ar Kr Xe Po Rn Ra Eu Lu Pa Ac C S Fe Cu Ag Sn Au Hg Pb Ancient Times Tc Hf Re At Fr Pm Np Pu Am Cm Bk Cf Es Fm Md No Lr He Sc Ga Ge Rb Ru In Cs Tl Pr Nd Sm Gd Dy Ho Tm Yb La Cr Mn Li K N O F Na B Be H Al Si Cl Ca Ti V Co Ni Se Br Sr Y Zr Nb Mo Rh Pd Cd Te I Ba Ta W Os Ir Mg Ce Tb Er Th U P Zn As Sb Pt Bi Midd Rf Db Sg Bh Hs Mt 1965- The Noble Gases At the start of the 1890s, no one had any idea that there was a separate group of gases in the periodic table, the noble gases. Noble gases are familiar to us from their use in neon signs and helium balloons. By 1900 this whole new group had been identified and isolated. While trying to determine an accurate atomic mass for nitrogen, British physicist Lord Raleigh ( ) discovered that nitrogen prepared from ammonia was noticeably lighter than nitrogen that came from the atmosphere. He and William Ramsay ( ) both studied “atmospheric” nitrogen. By removing the nitrogen from it, they produced a tiny quantity of another gas. Since it did not react with anything they called it argon, from the Greek word for lazy. The discovery of helium followed a year later in Ramsay and his assistant Morris Travers ( ) then started to search for additional elements in this new group. They attempted this by fractional distillation of large quantities of liquid air and argon. In 1898, their efforts were rewarded; they had prepared krypton, neon, and xenon. Eyewitness Science “Chemistry” , Dr. Ann Newmark, DK Publishing, Inc., 1993, pg 32 Journal of Chemical Education, Sept. 1989

4 Melting Points H He Mg Symbol Melting point oC Li Be B C N O F Ne
-259.2 He -269.7 1 1 Mg 650 Symbol Melting point oC Li 180.5 Be 1283 B 2027 C 4100 N -210.1 O -218.8 F -219.6 Ne -248.6 2 2 > 3000 oC oC Na 98 Mg 650 Al 660 Si 1423 P 44.2 S 119 Cl -101 Ar -189.6 3 3 K 63.2 Ca 850 Sc 1423 Ti 1677 V 1917 Cr 1900 Mn 1244 Fe 1539 Co 1495 Ni 1455 Cu 1083 Zn 420 Ga 29.78 Ge 960 As 817 Se 217.4 Br -7.2 Kr -157.2 4 4 Rb 38.8 Sr 770 Y 1500 Zr 1852 Nb 2487 Mo 2610 Tc 2127 Ru 2427 Rh 1966 Pd 1550 Ag 961 Cd 321 In 156.2 Sn 231.9 Sb 630.5 Te 450 I 113.6 Xe -111.9 5 5 Cs 28.6 Ba 710 La 920 Hf 2222 Ta 2997 W 3380 Re 3180 Os 2727 Ir 2454 Pt 1769 Au 1063 Hg -38.9 Tl 303.6 Pb 327.4 Bi 271.3 Po 254 At Rn -71 6 6 Ralph A. Burns, Fundamentals of Chemistry , 1999, page 1999

5 Densities of Elements H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K
0.071 He 0.126 1 1 Li 0.53 Be 1.8 B 2.5 C 2.26 N 0.81 O 1.14 F 1.11 Ne 1.204 2 2 Na 0.97 Mg 1.74 Al 2.70 Si 2.4 P 1.82w S 2.07 Cl 1.557 Ar 1.402 3 3 K 0.86 Ca 1.55 Sc (2.5) Ti 4.5 V 5.96 Cr 7.1 Mn 7.4 Fe 7.86 Co 8.9 Ni 8.90 Cu 8.92 Zn 7.14 Ga 5.91 Ge 5.36 As 5,7 Se 4.7 Br 3.119 Kr 2.6 4 4 Rb 1.53 Sr 2.6 Y 5.51 Zr 6.4 Nb 8.4 Mo 10.2 Tc 11.5 Ru 12.5 Rh 12.5 Pd 12.0 Ag 10.5 Cd 8.6 In 7.3 Sn 7.3 Sb 6.7 Te 6.1 I 4.93 Xe 3.06 5 5 Cs 1.90 Ba 3.5 La 6.7 Hf 13.1 Ta 16.6 W 19.3 Re 21.4 Os 22.48 Ir 22.4 Pt 21.45 Au 19.3 Hg 13.55 Tl 11.85 Pb 11.34 Bi 9.8 Po 9.4 At --- Rn 4.4 6 6 Element Year Discovered Density (g/cm3) Osmium Iridium Platinum Rhenium Neptunium Plutonium Gold prehistoric Tungsten Uranium Tantalum 8.0 – 11.9 g/cm3 12.0 – 17.9 g/cm3 > 18.0 g/cm3 Mg 1.74 Symbol Density in g/cm3C, for gases, in g/L W

6 Oxidation State of Elements
Group 1 18 Be2+ Na+ K+ Rb+ Cs+ Ba2+ H+ Li+ Ca2+ Sr2+ Mg2+ N O B L E G A S 1 1 2 13 14 15 16 17 N3- O2- F1- 2 2 Al3+ S2- Cl1- 3 3 Transition metals Period Zn2+ Se2- Br1- 4 4 Ag1+ Te2- I1- 5 5 6 6

7 Mendeleev late 1800’s Grouped elements with similar properties into columns. Russian, late 1800’s. noble gases discovered after him (1890’s). Chemical properties- how they react with other substances Physical properties- density, color, melting/boiling point, mass

8 Mendeleev’s Periodic Law
The properties of the elements are a periodic function of their atomic masses. Atomic number wasn’t known at the time.

9 Today’s Periodic Law The properties of the elements are a periodic function of their atomic numbers. Using x-rays, Moseley determined the number of protons per element (atomic number).

10 The Periodic Table * Y * Lanthanides Y Actinides Alkaline H He Li Be B
Noble gases Alkaline earth metals Halogens 1 18 H 1 He 2 2 13 14 15 16 17 Li 3 Be 4 B 5 C 6 N 7 O 8 F 9 Ne 10 Na 11 Mg 12 3 4 5 6 7 8 9 10 11 12 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 Transition metals K 19 Ca 20 Sc 21 Ti 22 V 23 Cr 24 Mn 25 Fe 26 Co 27 Ni 28 Cu 29 Zn 30 Ga 31 Ge 32 As 33 Se 34 Br 35 Kr 36 Alkali metals Rb 37 Sr 38 Y 39 Zr 40 Nb 41 Mo 42 Tc 43 Ru 44 Rh 45 Pd 46 Ag 47 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 * Hf 72 Ta 73 W 74 Re 75 Os 76 Ir 77 Pt 78 Au 79 Hg 80 Tl 81 Pb 82 Bi 83 Po 84 At 85 Rn 86 Fr 87 Ra 88 Y Rf 104 Db 105 Sg 106 Bh 107 Hs 108 Mt 109 Uun 110 Uuu 111 Uub 112 Uuq 113 Uuh 116 Uuo 118 * Lanthanides La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 Gd 64 Tb 65 Dy 66 Ho 67 Er 68 Tm 69 Yb 70 Lu 71 Y Actinides Ac 89 Th 90 Pa 91 U 92 Np 93 Pu 94 Am 95 Cm 96 Bk 97 Cf 98 Es 99 Fm 100 Md 101 No 102 Lr 103

11 Representative elements
Filling the s and p sublevels

12 METALS Metals and Nonmetals Nonmetals Metalloids H He Li Be B C N O F
1 He 2 1 Li 3 Be 4 B 5 C 6 Nonmetals N 7 O 8 F 9 Ne 10 2 Na 11 Mg 12 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 3 K 19 Ca 20 Sc 21 Ti 22 V 23 Cr 24 Mn 25 Fe 26 Co 27 Ni 28 Cu 29 Zn 30 Ga 31 Ge 32 As 33 Se 34 Br 35 Kr 36 4 METALS Rb 37 Sr 38 Y 39 Zr 40 Nb 41 Mo 42 Tc 43 Ru 44 Rh 45 Pd 46 Ag 47 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 5 Metalloids Cs 55 Ba 56 Hf 72 Ta 73 W 74 Re 75 Os 76 Ir 77 Pt 78 Au 79 Hg 80 Tl 81 Pb 82 Bi 83 Po 84 At 85 Rn 86 6 * Fr 87 Ra 88 Rf 104 Db 105 Sg 106 Bh 107 Hs 108 Mt 109 7 W La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 Gd 64 Tb 65 Dy 66 Ho 67 Er 68 Tm 69 Yb 70 Lu 71 Ac 89 Th 90 Pa 91 U 92 Np 93 Pu 94 Am 95 Cm 96 Bk 97 Cf 98 Es 99 Fm 100 Md 101 No 102 Lr 103

13 Metals Luster (shine) Ductile (can be pulled into wires) Malleable
Good conductors of heat and electricity Have ≤3 valence electrons so tend to lose electrons copper Most elements. Only one is a liquid at room temperature. Why is hydrogen in column 1 if it is not a metal? strontium manganese

14 Nonmetals Brittle or gaseous Insulators
Have 5 or more valence electrons, so tend to gain (or share) electrons phosphorus sulfur

15 Metalloids Elements with properties of both metals and nonmetals
Located on a diagonal between metals and nonmetals. germanium arsenic silicon

16

17 Octet Rule Eight electrons in the outer energy level make an atom unreactive or stable. Why would that rule still apply to elements in the 4th period, where the d sublevel is filling?

18 Reactivity The most active metals are in the lower left corner, and the most active nonmetals are in the upper right corner.

19 Atomic radii Noble gases have been found to be larger than the element immediately to their left on the PT. They are not interacting with other atoms of the same element, like most crystals do.

20 Atomic Radii Increases down a group, since they have increasing energy levels. Decreases across a period due to increasing nuclear charge (the force of attraction between nucleus and electrons).

21 Ions Metals lose an electron, giving them a positive charge, and decreasing their radius. Nonmetals gain electrons, giving them a negative charge, and increasing their radius. Anion, cation

22 Top row- atomic radii Bottom row- ionic radii Na+ ion loses its 3s e-, decreasing by one energy level & the same no. of protons are attracting fewer electrons. Cl- ion gains an e-, giving it an -1 charge. Metallic ions (lt) are formed by losing e- so their ionic radii are smaller than their atomic radii. Nonmetals gain e- so their ions are larger than their atoms.

23 Ionization energies Energy needed to remove an electron from an atom (kJ/mol) Going across a period it increases due to increasing nuclear charge. Going down a group, the ionization energy decreases due to increased atomic radius and the shielding effect. Second ionization energy- the energy required to remove a second electron from an atom. These ionization energy patterns are evidence of energy levels.

24 Electrons from a full or half-full sublevel require more energy to remove.

25 Ionization Energies (kJ/mol)
Element Na Mg Al Si P S Cl Ar 1st 498 736 577 787 1063 1000 1255 1519 2nd 4560 1445 1815 1575 1890 2260 2295 2665 3rd 6910 7730 2740 3220 2905 3375 3850 3945 4th 9540 10,600 11,600 4350 4950 4565 5160 5770 5th 13,400 13,600 15,000 16,100 6270 6950 6560 7320 6th 16,600 18,000 18,310 19,800 21,200 8490 9360 8780 Ionization energy increases with the removal of each additional electron. Metals have low ionization energy; nonmetals have high ionization energy. This experimental data gives evidence for: 1) effect of increasing nuclear charge 2) stability of octet 3) effect of increased radius 4) s & p sublevel in outer level SUGGESTION: Emphasize that theories came from experimental evidence! Herron, Frank, Sarquis, Sarquis, Cchrader, Kulka, Chemistry 1996, Heath, page Shaded area on table denotes core electrons.

26 Electronegativity The power of an atom in a molecule to attract electrons to itself. Decrease from top to bottom Increase from left to right F has the highest Elements with high electron affinities gain electrons, forming negative ions. The more stable an atom is, the less likely it will attract an e- (giving it a negative electron affinity).

27 Electronegativities Period H B P As Se Ru Rh Pd Te Os Ir Pt Au Po At
2.1 B 2.0 P As Se 2.4 Ru 2.2 Rh Pd Te Os Ir Pt Au Po At 1 1 2A 3A 4A 5A 6A 7A Actinides: Li 1.0 Ca Sc 1.3 Sr Y 1.2 Zr 1.4 Hf Mg La 1.1 Ac Lanthanides: * y Be 1.5 Al Si 1.8 Ti V 1.6 Cr Mn Fe Co Ni Cu 1.9 Zn 1.7 Ga Ge Nb Mo Tc Ag Cd In Sn Sb Ta W Re Hg Tl Pb Bi N 3.0 O 3.5 F 4.0 Cl C 2.5 S Br 2.8 I 2 2 Na 0.9 K 0.8 Rb Cs 0.7 Ba Fr Ra Below 1.0 3 3 3B 4B 5B 6B 7B 8B 1B 2B Period 4 4 5 5 6 6 Linus Pauling ( ) awarded Nobel Prize in chemistry in 1954 for his 1939 text, The Nature of the Chemical Bond, and also won the Nobel Peace Prize in 1962 for his fight to control nuclear weapons. The greater the electronegativity of an atom in a molecule, the more strongly it attracts the electrons in a covalent bond. 7 Hill, Petrucci, General Chemistry An Integrated Approach 2nd Edition, page 373

28


Download ppt "Periodic Table."

Similar presentations


Ads by Google