Presentation is loading. Please wait.

Presentation is loading. Please wait.

CS294-6 Reconfigurable Computing Day4 September 3, 1998 VLSI Scaling.

Similar presentations


Presentation on theme: "CS294-6 Reconfigurable Computing Day4 September 3, 1998 VLSI Scaling."— Presentation transcript:

1 CS294-6 Reconfigurable Computing Day4 September 3, 1998 VLSI Scaling

2 Why Care? In this game, we must be able to predict the future Rapid technology advance Reason about changes and trends re-evaluate prior solutions given technology at time X.

3 Scaling Premise: features scale “uniformly” –everything gets better in a predictable manner Parameters: –  (lambda) -- Mead and Conway (class) –S -- Bohr –1/  -- Dennard

4 Feature Size

5 Scaling Channel Length (L) Channel Width (W) Oxide Thickness (T ox ) Doping (N a ) Voltage (V)

6 Scaling Channel Length (L) Channel Width (W) Oxide Thickness (T ox ) Doping (N a ) 1/ Voltage (V)

7 Effects? Area Capacitance Resistance Threshold (V th ) Current (I d ) Gate Delay (  gd ) Wire Delay (  wire ) Power

8 Area   L * W    m  m 50% area 2x capacity same area

9 Area Perspective

10 Capacitance Capacitance per unit area –C ox =  SiO 2 /T ox –T ox  T ox /  –C ox  C ox

11 Capacitance Gate Capacitance –C gate = A*C ox –   –C ox  C ox –C gate  C gate / 

12 Threshold Voltage

13 V TH  V TH 

14 Current Saturation Current –I d =(  C OX /2)(W/L)(V gs -V TH ) 2 –V gs= V  V  –V TH  V TH  –W  W  –C ox  C ox –I d  I d 

15 Gate Delay  gd =Q/I=(CV)/I V  V  I d  I d  C  C /   gd  gd / 

16 Resistance R=  L/(W*t) W  W  R  R

17 Wire Delay  wire =R L C R  R C  C /   wire  wire …assuming (logical) wire lengths remain constant...

18 Power Dissipation (Static) Resistive Power –P=V*I –V  V  –I d  I d  –P  P  

19 Power Dissipation (Dynamic) Capacitive (Dis)charging –P=(1/2)CV 2 f –V  V  –C  C /  –P  P   Increase Frequency? –f  f ? –P  P  

20 Effects? Area 1/   Capacitance 1/  Resistance  Threshold (V th ) 1/  Current (I d ) 1/  Gate Delay (  gd ) 1/  Wire Delay (  wire ) 1 Power 1/    1/  

21 Delays? If delays in gates/switching? If delays in interconnect? Logical interconnect lengths?

22 Delays? If delays in gates/switching? –Delay reduce with 1/ 

23 Delays Logical capacities growing Wirelengths? –No locallity  –Rent’s Rule L  n (p-0.5) [p>0.5]

24 Capacity Rent: IO=C*N p p>0.5 A  C*N 2p Logical Area     A  C*N 2 2p   N 2p  N 2 2p  N 2   p) N Sanity Check –p=1 –N 2  N –p~0.5 –N 2   N

25 Compute Density   >compute density scaling>     gates dominate, p<0.5    moderate p, good fraction of gate delay    large p (wires dominate area and delay)

26 Power Density P  P   (static, or increase frequency) P  P   (dynamic, same freq.)   P/A  P/A … or … P/  A

27 Scaling Summary Uniform scaling reasonably accurate for past couple of decades Area increase   –Real capacity maybe a little less? Gate delay decreases (1/  ) Wire delay not decrease, maybe increase Overall delay decrease less than (1/  )


Download ppt "CS294-6 Reconfigurable Computing Day4 September 3, 1998 VLSI Scaling."

Similar presentations


Ads by Google