Presentation is loading. Please wait.

Presentation is loading. Please wait.

RHEEM COMMERCIAL WATER HEATING TRAINING. TRAINING COURSE OBJECTIVES Introduction to Rheem Commercial Booklet Range appreciation Familiarise key design.

Similar presentations


Presentation on theme: "RHEEM COMMERCIAL WATER HEATING TRAINING. TRAINING COURSE OBJECTIVES Introduction to Rheem Commercial Booklet Range appreciation Familiarise key design."— Presentation transcript:

1 RHEEM COMMERCIAL WATER HEATING TRAINING

2 TRAINING COURSE OBJECTIVES Introduction to Rheem Commercial Booklet Range appreciation Familiarise key design / installation criteria Introduction to manifolding Introduction to sizing Value added service

3 Commercial Water Heating course contents Chapter 1 - Range overview - Commercial Booklet Chapter 2 - Heat Pump Chapter 3 - Commercial Solar Chapter 4 - Equaflow Manifolding Chapter 5 - Commercial Continuous Flow Chapter 6 - Commercial Storage Gas systems Chapter 7 - Raypak Heating and Hot Water Chapter 8 - Commercial Electric Chapter 9 - Guardian Warm Water Chapter 10 – Pump Sets Chapter 11 - Sizing and Selecting Chapter 12 - Commercial installation and design

4 Chapter 1 Range Overview & Rheem Commercial Booklet

5 Chapter 2 - Commercial Heat Pump

6 COMMERCIAL HEAT PUMP LAYOUTS

7

8 Chapter 3 - Commercial Solar

9 Commercial Solar Terminology – Split / Pumped / Loline – Close Coupled / Thermosiphon / Hiline – Direct / Indirect (Premier Hiline)

10 Commercial Solar Loline

11 Pumped system – Collectors and tank are split – Fluid is pumped between collectors and tanks – Can be on same level or different levels Direct system – Consumed water passes through the collectors – Partial frost protection In series boost

12

13 Commercial Solar Loline 325L and 410L vitreous enamel storage tanks – Manifold tanks as required NPT200 collector – Painted aluminium selective surface – 7 riser tubes – Good performance in all regions

14 Commercial Solar Loline Frost – Limited frost protection – Frost sensor strategy – Electric or gas frost heater Secondary Solar Recirculation – Maximum solar energy use – reduces energy use BMS output – Run and fail status

15 Commercial Solar Premier Hil Commercial Solar Premier Hiline

16 Commercial Solar Premier Hiline Thermosiphon system – Collectors and tank are close coupled – Fluid rises through collectors naturally to tank – Tank is always above collectors Indirect system – Transfer fluid passes through the collectors and transfers heat to tank via heat exchanger – Full frost protection In series or in- tank electric boost

17 Commercial Solar Premier Hiline 300L stainless steel tank Manifold systems as required 8 systems per array, multiple arrays possible S200 collector – Steel collector – Painted selective surface – Good performance in all regions

18

19 Flat Plate vs Evacuated Tube Collectors

20 Chapter 4

21 EQUA-FLOW BASICS

22 In Line Header diameters for cold/hot to be equal Branch diameters for cold/hot to be equal Hydraulic water flow “In one side, out the opposite” Balanced performance per unit. Full delivery capacity from system Flow direction In Flow direction Out

23 Back to Back Flow direction In Flow direction Out EQUA-FLOW BASICS

24 11 0 A B 0+1+1=2 EQUA-FLOW BASICS

25 1 1 A B 11 PATH of LEAST RESISTANCE

26 MORE EQUA-FLOW PRINCIPLES A B = = =6

27 ANGLED MANIFOLD 3 + bend 1 1 B A

28 BACK TO BACK MANIFOLD 0.75 H6: = 2.75 H4: = 2.75 H2: = H1: = 2.75 H3: = 2.75 H5: = 2.75 A B

29 EQUAFLOW PRINCIPLES IN PRACTICE

30 When designing/ inspecting complicated manifolds consideration must be given to primary loops as well as hot and cold headers COMPLICATED EQUAFLOW PRINCIPLES IN PRACTICE

31 EQUAFLOW PRINCIPLES IN PRACTICE

32 COMPLICATED EQUAFLOW PRINCIPLES IN PRACTICE

33 BRANCHES NEVER use non-return valves or pressure limiting valves in the branch – These create imbalance in the branches Non-return and pressure reducing valves must be in a train on the cold water inlet COLD WATER SUPPLY TO WATER HEATER MANIFOLD

34 BRANCHES Only an isolating valve and union must be in the branch Full flow gate or ball valves must ONLY be used NEVER use duo valves or loose jumper valves – These create imbalance in the branches

35 BRANCHES Last branch should be a T piece, not an elbow, to maintain equal resistance in all branches T PIECE

36 Chapter 5 - Commercial CFWH

37 RHEEM INDOOR CFWH – FLUE SYSTEMS USE MM AND FF ADAPTERS IF HORIZONTAL LENGTH OF HORIZONTAL TERMINATING FLUE EXCEEDS 2.7M TRIM RING USE CONDENSATE DRAIN & TRAP IF VERTICAL SECTION OF HORIZONTAL TERMINATING FLUE EXCEEDS 2M

38 Rheem Multipak, Tankpak, Commpak and Commpak Plus Commercial Continuous Flow Hot Water Solutions

39

40 Chapter 6 - Commercial Gas Storage

41 RHEEM Commercial Gas Storage Work horse of the industry 3 input sizes – 50, 110, 200MJ/hr Indoor and outdoor models Multi-fin flue technology Flue damper Hot Surface Ignition Up to 82 o C Room sealed flue

42 HD Gas Layout

43 Room Sealed Flue Converts outdoor model to indoor room sealed Ideal where no ventilation, contaminated air supply or fluing to roof impractical 3m and 3 x 90 o bends Re-use flue terminal Kit P/No

44

45 Chapter 7 – Raypak Heating and Hot Water

46 Raypak Layouts

47 Chapter 8 - Commercial Electric Storage

48 RHEEM Commercial Electric Storage Work horse of the industry 2 x 3 element models – 50 & 315L 1 x 6 element model – 315L Up to 36kW output Indoor and outdoor installation Heavy Duty enamel Larger anode Models up to 82 o C

49 HD Electric Layout

50 Chapter 9 - Rheem Guardian Warm Water

51 Chapter 10 - Pump Sets

52 Deluxe Pump Sets Deluxe Models UPS 20-60N and 32-80N pumps Individual Auto, Off, Manual switches Individual Run and Fail indicators Timer control Isolation and check valves included BMS output

53 Standard Pump Sets Standard Models UPS 20-60N and 32-80N pumps Single Auto, Off, Manual switch Timer control Isolation and check valves included

54 Chapter 11 Sizing and selecting... Sizing and selecting...

55 Energy Consumption It takes 4.2kJ of heat energy to raise 1litre of water (or 1 kg) of water 1 degree E = L x 4.2 x dT Example : To raise 500 litres by 32 degrees (from 10C to 42C) Energy consumption = 500 x 4.2 x 32 = 67,200kJ or 67.2MJ Plant efficiency must also be considered. If the plant operates at 80% efficiency, then; Energy required = 67.2 / 0.8 = 84MJ

56 Typical Hot Water Usage Assumptions Offices Office peak period 60 minutes – Water per person 0.5 litres – Area per person 10m 2 – Occupants Gymnasium peak period 30 minutes – Water per person 25 litres

57 Typical Hot Water Usage Assumptions Food Service Restaurant Peak Period – 2 hours (temperature requirements) – Bistro per Meal5.0 litres – Coffee Shop per Meal3.5 litres – Auditorium per Meal3.0 litres – Restaurant per Meal5.5 litres – Takeaway Shop per Meal – Café per Meal3.0 litres – Hotel Kitchen per Meal6.0 litres

58 Typical Hot Water Usage Assumptions Apartments Peak period 60 minutes – Bed-sitter 25 litres – 1 Bedroom 40 litres – 2 Bedroom 70 litres – 2 Bedroom w/en suite 75 litres – 3 Bedroom 80 litres – 3 Bedroom w/en suite 90 litres – 4 Bedroom 100 litres – Penthouse 150 litres

59

60 Typical Hot Water Usage Assumptions Motel Motel peak period 60 minutes (Assume 2 people per room) – Shower 1 & 2 Star20 litres /person – Shower 3 Star25 litres /person – Shower 4 Star30 litres /person – Shower 5 Star45 litres /person – Shower Family/Spa 100 litres /person

61 Sizing example... Motel 100 rooms 5 star accommodation Central electric plant Moderate climate Refer to commercial booklet...

62 Sizing example... Motel Showers = 50 x 2x 45 = 4,500L/1hr peak Moderate climate = 50 o C rise Central electric plant: – 5 x with 6 x 6kW elements

63 Hot Water Usage Assumptions Nursing Home Peak period 180 minutes – Bedpan 2.5 litres / bed – Shower 25 litres / bed – Cleaning water 10 litres / bed – Water per meal 5.5 litres Laundry peak 300 minutes – Laundry (1.2kg per bed) 10 litres / kg

64 Selecting a water heating system Usage profiles...Have they changed? Peak Period in Litres/hr (e.g. 1hr) Redundancy Daily Load in Litres (Solar)... Water delivery Temperatures Plant Location - Indoor or Outdoor Flue location & termination (room sealed?) Circulation Systems...considerations

65 Sporting Facility Case Study Football Club - Tasmania

66 Sizing example... Local football club 15 shower 6 litres per minute (hot) 35 players inc umpires Commercial heat pump system Refer booklet...

67 Sizing example... Players and Umpires = 35 Shower time, say 10 mins Peak duration = 30mins Showers = 35 x 6L/min x 10 = 2,100 litres Plant selection: 6 x storage tanks 1 x heat pump ambient =244L/hr = 9hrs

68 SELECTION & SIZING... Diversity... The difference between the maximum possible load on a water heating system if all outlets were in use at once and the “likely” load at any given time. Example... In a multi story accommodation building, only a predictable percentage of taps will be turned on at any given time, however it can be expected that all taps in a shower block of a sporting facility can be turned on at once and will require full heated water flow.

69 SELECTION & SIZING CFWH PLANT or STORAGE PLANT... What to consider? Footprint availability e.g. solar Storage volume? Maintenance/removal Flow rates Gas and water pressure Fluing Energy/fuel types

70 Chapter 12 Commercial Installation and Design Requirements Commercial Installation and Design Requirements

71 82 o C Dead Leg Operation

72 Primary Pump Requirements Used for Raypak, Solar and Heat Pump Non return valve is not required after primary pump. Spindle must be horizontal Pump is not weather proof – must be covered Primary PumpIsolation Valve Note: Pump shaft must be horizontal

73 NOT EQUA-FLOW PUMP SPINDLE VERTICAL

74 Clearances

75 CASE STUDY #2 Rheem Commercial Water Heating Systems Rheem Solar preheated, gas storage with a warm water system.

76 Commercial application – Large nursing home

77 Including a commercial laundry

78 Commercial kitchen

79 Commercial sinks

80 Electric boost on sink

81 Commercial dishwashing machine

82 Water must be at sanitizing temperature i.e. 77 degrees

83 The solar array To achieve the energy rating for the building, solar has been chosen. Often solar is a preferred method to achieve the energy reduction on site. Note - north facing collectors Note - the fall protection The panels are set in two arrays of 8 collectors

84 16 Rheem solar panels – ‘primary source of heat’ Each square meter(approx) of panel requires approx. 60 litres of solar storage tank capacity!

85 Collector connections

86 Primary flow and return to solar panels.

87 Temperature probe wired to solar controller and to the circulating pump. It works on a 8 degree C differential.

88 Automatic air eliminator on the return line out of the panels.

89 The return hot water line to storage tanks Note the pipe insulation to reduce heat loss which is measured in ‘ watts ‘ per meter Lagging must be UV resistant and meet AS3500.4

90 Four Rheem 430 litre solar storage cylinders ( 1720 litre capacity )

91 Rheem Gas boost mains pressure storage units.

92 Rheem Solar controller Green light indication of system cycle. Note - the solar return pipe work from the panels.

93 Primary flow and return from solar panels Note – the isolation valves Note – the pipe lagging

94 Commercial site assistance

95 THANK YOU FOR YOUR TIME TODAY We trust you have enjoyed and benefited from this training course... We trust you have enjoyed and benefited from this training course...


Download ppt "RHEEM COMMERCIAL WATER HEATING TRAINING. TRAINING COURSE OBJECTIVES Introduction to Rheem Commercial Booklet Range appreciation Familiarise key design."

Similar presentations


Ads by Google