Presentation is loading. Please wait.

Presentation is loading. Please wait.

Variatie in Free Choice Giannakidou 2001 The meaning of Free Choice, Linguistics & Philosophy 24 Evangelia Vlachou, ViB, 30/05/2005.

Similar presentations


Presentation on theme: "Variatie in Free Choice Giannakidou 2001 The meaning of Free Choice, Linguistics & Philosophy 24 Evangelia Vlachou, ViB, 30/05/2005."— Presentation transcript:

1 Variatie in Free Choice Giannakidou 2001 The meaning of Free Choice, Linguistics & Philosophy 24 Evangelia Vlachou, ViB, 30/05/2005

2 Wat weten wij al? FCIs zijn een subklasse van PIs FCIs zijn een subklasse van PIs *I saw any student *I saw any student You may go out with anyone You may go out with anyone FCIs verschillende van NPIs FCIs verschillende van NPIs I did see not any student (NPI) I did see not any student (NPI) You may go out with anyone (FCI) You may go out with anyone (FCI)

3 Doel: analyzeren FCIs Probleem: Any is een NPI en een FCI Strategie: Grieks! Verschillenden vorm voor NPI en FCI Dhen ipa tipota (NPI) Not said NPI-anything Not said NPI-anything Boris na vjis me opjondhipote (FCI) Can SUBJ go.out with FCI-anyone Can SUBJ go.out with FCI-anyone

4 GR FCIs zijn ongramaticale in Affirmative episodic contexten: Affirmative episodic contexten: *Idha opjondhipote *Idha opjondhipote Saw FCI-anyone Saw FCI-anyone *I saw anyone *I saw anyone Positive factive contexten: Positive factive contexten: *Xerome pu pandreftikes opjondhipote Am.glad that got.married FCI-anyone Am.glad that got.married FCI-anyone I am glad that you got married with ANYone I am glad that you got married with ANYone Negative factive contexten Negative factive contexten *Lipame pu pandreftikes opjondhipote *Lipame pu pandreftikes opjondhipote Am.sorry that got.married FCI-anyone Am.sorry that got.married FCI-anyone I am sorry that you got married with ANYone I am sorry that you got married with ANYone

5 GR FCIs zijn ongramaticale in Existentiele predicaten Existentiele predicaten *Iparxi opjosdhipote ston kipo *Iparxi opjosdhipote ston kipo There.is FCI-anyone to.the garden There.is FCI-anyone to.the garden *There is anyone in the garden *There is anyone in the garden in een word: veridicale contexten

6 FCIs zijn niet in de bereik van episodische contexten Negatieve episodic contexten: Negatieve episodic contexten: Je n’ ai pas parlé à n’importe qui Je n’ ai pas parlé à n’importe qui I not have not spoken to FC-anyone I not have not spoken to FC-anyone I did not meet just anyone. (I met the president) I did not meet just anyone. (I met the president) x[person(x) I.met(x)  indiscriminate(x)) x[person(x) I.met(x)  indiscriminate(x)) Andere episodische contexten: Andere episodische contexten: Est-ce qu’elle a mangé n’importe quoi? Est-ce qu’elle a mangé n’importe quoi? ? she has eaten FC-anything? ? she has eaten FC-anything? Did she eat just anything? Did she eat just anything? Je n’ ai pas vu qui que ce soit Je n’ ai pas vu qui que ce soit I not have not seen anyone I not have not seen anyone I did not see anyone I did not see anyone  x[person(x) I.met(x)  x[person(x) I.met(x)

7 FCIs zijn gramaticale in Modale contexten: Modale contexten: Boris na paris opjadhipote karta Boris na paris opjadhipote karta Can SUBJ take any card Can SUBJ take any card You can take any card! You can take any card! Conditionele contexten: Conditionele contexten: Ean lisis opjadhipote askisi, tha paris dheka Ean lisis opjadhipote askisi, tha paris dheka If solve any exercise will take ten If solve any exercise will take ten If you solve any problem, I will give you a ten! If you solve any problem, I will give you a ten! In een word: nonveridicale contexten In een word: nonveridicale contexten

8 Nonveridicality (Zwarts 1995, Giannakidou 2001) Let c be a context which contains a set M of models relative to an individual x. Let c be a context which contains a set M of models relative to an individual x. A propositional operator Op is veridical iff [[Op p]] c = 1 → [[p]]=1 in some epistemic model M E (x)  c; otherwise Op is nonveridical. A propositional operator Op is veridical iff [[Op p]] c = 1 → [[p]]=1 in some epistemic model M E (x)  c; otherwise Op is nonveridical. Yesterday, I saw a student → I saw a student (VER) Yesterday, I saw a student → I saw a student (VER)  Binding by a default existential quantifier (existential closure Heim 1982) There is a student in the court → A student is in the yard There is a student in the court → A student is in the yard 

9 Nonveridical en antiveridical Nonveridical Nonveridical You may go out with a student-/ → You go out with a student Antiveridical A nonveridical operator Op is antiveridical iff [[Op p]]c =1 [[p]]=0 in some epistemic model ME(x)  c. Yesterday, I did not see a student → (I saw a student)

10 Epistemic model An epistemic model M E (x) is a set of worlds associated with an individual x, representing worlds compatible with what x believes An epistemic model M E (x) is a set of worlds associated with an individual x, representing worlds compatible with what x believes M E (x)(w) ={w’:p[x believes p(w)  p(w’)]}, where w is a world of evaluation and x an individual M E (x)(w) ={w’:p[x believes p(w)  p(w’)]}, where w is a world of evaluation and x an individual

11 Licensing conditions voor FCIs Een FCI a is gramaticaal in een zin S desda: Een FCI a is gramaticaal in een zin S desda: (i) a is de bereik van een nonveridicaal operator b en (i) a is de bereik van een nonveridicaal operator b en (ii) S is niet episodisch (ii) S is niet episodisch

12 Waarom zijn FCIs SIs? (I) FCIs zijn indefinites: ze introduceren alleen een free variable (II) Indefinites + intensional (III) Indefinites + Variatie

13 Indefinites zijn free variables (I) Een indefinite is een free variable zonder quantificationele macht. (Heim, on Lewis 1975, zie ook Kamp 1981) De free variable is bound in 2 manieren: (a) in de bereik van een unselective kwantor (a) in de bereik van een unselective kwantor If a man owns a donkey, he always beats it If a man owns a donkey, he always beats it (b) Door existential closure () (b) Door existential closure () A dog is coming. It wants to come in. A dog is coming. It wants to come in. Voor EC: (dog(x 1 )&is-coming(x 1 )&(x 1 )wants-to-come-in) Met EC:  1 (dog(x 1 )&is-coming(x 1 )&(x 1 )wants-to-come-in)

14 FCIs zijn indefinites (I) Ze zijn niet Universele kwantoren: geen universele macht Ze zijn niet Universele kwantoren: geen universele macht Idha olus tus fitites Idha olus tus fitites Saw all the students Saw all the students I saw all students I saw all students *Idha opjondhipote fititi *Idha opjondhipote fititi Saw FC student Saw FC student * I saw any student * I saw any student

15 FCIs zijn indefinites (I) Donkey anaphora: universals zijn statisch maar existentials niet I fitites pu aghorasan kathe vivlio na mu to dhiksun I fitites pu aghorasan kathe vivlio na mu to dhiksun *The students that bought every book show it to me immediately *The students that bought every book show it to me immediately I fitites pu aghorasan opjodhipote vivlio na mu to dhiksun The students that bought any book show it to me immediately The students that bought any book show it to me immediately I fitites pu aghorasan ena vivlio na mu to dhiksun The students that bought a book show it to me immediately The students that bought a book show it to me immediately

16 FCIs zijn indefinites (I) Universal quantifiers have inverse scope over the licensing operator Some student will pick up every speaker from the airport x[student(x) y[invited speaker(y)  pick- up(x,y) ]] x[student(x) y[invited speaker(y)  pick- up(x,y) ]] Some student will pick up any speaker from the airport x[student(x) y[invited speaker(y)  pick- up(x,y) ]] #x[student(x) y[invited speaker(y)  pick- up(x,y) ]]

17 FCIs zijn indefinites (I) Existentiele interpretatie als indefinites Dhialekse opjodhipote forema Pick any dress Pick some dress! Existentiele en universele interpretatie als indefinites If a noise bothers you, please tell us. If any noise bothers you, please tell us.

18 FCIs=intensional indefinites (II) Verschill tussen intensionality en extensionality Montague (1969) John is seeking the president John is seeking Mary’s father Mary’s father is a president Mary’s father en the president=dezelfde extension maar niet dezelfde intension! Intensions are functions from possible worlds to corresponding extensions

19 FCIs=intensional indefinites (II) *Idha opjondhipote fititi *I saw any student I saw a student I saw a student FCIs combine with an intensional NP A student: student(x)/ A student: student(x)/ Any student: student(x,w) >  Nodig van een intensional operator!

20 FCIs=intensional indefinites (II) Modaliteit: Boris na dhanistis opjodhipote vivlio You can borrow any book  x C x where  is compatible with all worlds w (Kratzer 1977)

21 FCIs=indefinites + variatie (III) i-alternatives (from Dayal 1997) A world w 1 is an i-alternative wrt a iff there exists some w 2 such that [[a]] w 1 ≠ [[a]] w 2  Nonveridicality (modaliteit): introduceren i-alternatives

22 FCIs=indefinites + variatie (III) Anti-licensed door veridicality (geen i- alternative) *Idha opjondhipote fititi Saw FC student Saw FC student *I saw any student

23 Een ‘’hulp’’: subtrigging Legrand (1975) *I grabbed any tool I grabbed any tool that I found x, w[[tool(x,w)found(I,x,y)  grabbed (I,x,y)]] = an implicit conditional (nonveridical) operator

24 Free choice item Gelicenseerd bij nonveridicality Gelicenseerd bij nonveridicality Indefinite + intensionality + Variatie (i- alternatives) Indefinite + intensionality + Variatie (i- alternatives)


Download ppt "Variatie in Free Choice Giannakidou 2001 The meaning of Free Choice, Linguistics & Philosophy 24 Evangelia Vlachou, ViB, 30/05/2005."

Similar presentations


Ads by Google