Presentation is loading. Please wait.

Presentation is loading. Please wait.

Mark Bergeron, MD, MPH Associates in Newborn Medicine, PA, St. Paul Assistant Professor, Pediatrics, University of Minnesota Medical School TTN vs. TTT.

Similar presentations

Presentation on theme: "Mark Bergeron, MD, MPH Associates in Newborn Medicine, PA, St. Paul Assistant Professor, Pediatrics, University of Minnesota Medical School TTN vs. TTT."— Presentation transcript:

1 Mark Bergeron, MD, MPH Associates in Newborn Medicine, PA, St. Paul Assistant Professor, Pediatrics, University of Minnesota Medical School TTN vs. TTT (Time to Transport): Assessment of Neonatal Respiratory Distress Childrens/March of Dimes Neonatal Conference May 17, 2010

2 Disclosures I will not be discussing any experimental or off-label uses for any therapies during this presentation. I have no relevant financial relationships to declare.

3 Objectives 1.Formulate a differential diagnosis for the infant in respiratory distress. 2.Describe initial stabilization measures for the infant in respiratory distress. 3.Describe situations where ongoing respiratory distress requires transfer to a NICU for further management.


5 Introduction Respiratory distress is a frequent problem in the newborn period. –Most common indication for evaluation or re- evaluation of the newborn infant –Affects as many as 7% of newborns –Potentially life-threatening –Must be promptly assessed and managed by an on-site provider in the delivery room or newborn nursery

6 Clinical Presentation apnea cyanosis grunting stridor nasal flaring retractions –subcostal –intercostal –suprasternal tachypnea –(> 60/min) gasping choking

7 Image: Aly H. Pediatrics in Review (2004)

8 Narrowing the Differential Pulmonary –Transient Tachypnea of the Newborn (TTN) –Respiratory Distress Syndrome (RDS) –Meconium aspiration syndrome –Pneumonia/sepsis –Pneumothorax –Persistent pulmonary hypertension (PPHN) Non-pulmonary –Congenital cyanotic heart disease –Congenital airway anomalies –Other (neurologic, hematologic, metabolic, endocrine, maternal, etc.)


10 Case Studies

11 Case #1 3.6-kg term newborn female (20 minutes old) has tachypnea and acrocyanosis. She is 40 weeks EGA delivered by scheduled repeat c-section and Apgar scores were 7 and 8 at 1 and 5 minutes, respectively. Vitals are normal with the exception of a respiratory rate of 84 and exam is notable for slight subcostal retractions but otherwise normal. Over the next several hours, her respiratory rate steadily improves to the 40s and her acrocyanosis resolves.

12 Transient Tachypnea of the Newborn (TTN) Most common etiology of newborn respiratory distress. –11/1000 live births –Represents 40% of cases of newborn respiratory distress. Caused by delayed clearance of fetal lung fluid in both term and preterm infants

13 TTN Risk Factors At birth: –Air spaces rapidly clear fluid from lung expansion with air Promoted by: –Labor –Maternal epinephrine surge Guglani et al. Pediatrics in Review 2008

14 TTN: Clinical Findings History: –C/S > NSVD Exam: –Tachypnea +/- Grunting Nasal flaring Retractions Transient oxygen need Lab: –Mild respiratory acidosis or normal blood gas

15 TTN: Radiographic Findings Chest X-ray: –Increased interstitial markings (wet lung) –Increased fluid in interlobar fissures Image: Aly H. Pediatrics in Review (2004)

16 TTN: Typical Course Usually benign, self-limited Occasionally requires therapy: –Oxygen –nCPAP –Mechanical ventilation Diuretics not effective –i.e. Lasix Typically resolves by 2 days of age No lasting sequalae

17 Case #2 1.2-kg male infant born vaginally at 32 weeks EGA Apgars 6, 8 Required bulb suctioning, brief PPV. Grunting, retractions, nasal flaring, acrocyanosis immediately after birth. VS: HR 178, RR 79, Mean BP 39 mmHg. O 2 sat 74-78% in room air.

18 Case # 2 Continued Lab: –CBC unremarkable –ABG: 7.26/67/58/19 CXR: Prominent reticulogranular pattern uniformly distributed with hypoaeration of lungs. Increased air bronchograms are observed.

19 Respiratory Distress Syndrome (RDS) Also called hyaline membrane disease. Most common cause of respiratory distress in preterm infants. Due to structural and functional immaturity of lungs. –Underdeveloped parenchyma –Surfactant deficiency Type II pneumatocytes Results in decreased lung compliance, unstable alveoli

20 RDS Continued Risk factors –Prematurity <28 weeks GA (100%) weeks GA (33%) >34 weeks GA (5%) –Perinatal depression –Male predominance –Maternal diabetes –C-section –Multiple birth

21 Respiratory Distress Syndrome: Clinical Finings Exam: –Moderate to severe respiratory distress Tachypnea Grunting Apnea Retractions Nasal flaring Cyanosis Lab: –Moderate hypoxia –Respiratory acidosis –Metabolic acidosis (delayed) X-ray: –Low lung volumes –Diffuse atelectasis: ground glass opacities –Air bronchograms –Difficult to distinguish from pneumonia

22 RDS: Typical Course Prevention: –Antenatal bethamethasone –Arrest of preterm labor Treatment –Oxygen supplementation –Assisted ventilation nCPAP mechanical ventilation –FiO 2 >.40 –Exogenous surfactant replacement –Fluid restriction Outcome –Peak severity 1-3 days –Recovery coincides with diuresis beginning at 72 hrs –Severe cases evolve into bronchopulmonary dysplasia (chronic lung disease) Extreme prematurity Prolonged mechanical ventilation Sepsis

23 Case #3 4.2-kg female infant is cyanotic and tachypneic at 30 minutes of age following a vaginal delivery through meconium-stained amniotic fluid. Apgar scores were 3 and 6. She had a spontaneous but weak cry at birth and received some positive pressure ventilation followed by suctioning. Vitals signs reveal a pulse of 169, respiratory rate of 115, and a mean BP of 55. Sats are 76% despite 100% O2 by headbox. She is barrel- chested, retracting, grunting, and has diminished coarse breath sounds bilaterally. She is electively intubated, lines placed and labs sent.

24 Case # 3 Continued Lab: –CBC: NL –ABG: 7.19/72/36 CXR: Image: Aly H. Pediatrics in Review (2004)

25 Meconium Aspiration Syndrome (MAS) Meconium staining of amniotic fluid complicates nearly 15% of all deliveries. –Fetal distress –Primarily term and post-term Meconium can be aspirated before, during or after delivery. Once aspirated, meconium causes –Chemical pneumonitis –Mechanical obstruction (ball-valve) with severe air-trapping Pneumothoraces (10-20%) –Surfactant inactivation –Severe hypoxemia and hypoventilation V/Q mismatch

26 Meconium Aspiration Syndrome: Clinical Presentation Exam: –Air trapping with barrel chest –Moderate to severe respiratory distress –Rales and/or rhonchi –Hypoxia with cyanosis –Hypoperfusion Lab: –Acidosis Respiratory and metabolic CXR: –Hyperinflation/overdistensi on –Diffuse, patchy intraparenchymal opacities

27 Meconium Aspiration Syndrome: Typical Course Prevention? –NRP Treatment: –Oxygen –Mechanical ventilation High-Frequency –Jet –Oscillator –Surfactant replacement Complications –Sepsis/pneumonia –Airleaks Pneumothorax/pneum opericardium –Persistent pulmonary hypertension (PPHN) Treated with inhaled Nitric Oxide (iNO) ECMO Resolution –Days to weeks –Mortality 10-12%

28 Case #4 3.9-kg male infant develops poor feeding, tachypnea and mild oxygen need at 14 hrs of life. Exam: equal and clear breath sounds with tachypnea. Otherwise unremarkable. Labs: WBC 4.3 x 10 3, ABG NL, electrolytes and glucose acceptable. CXR:

29 Congenital Pneumonia: Clinical Presentation Most common neonatal infection Wide variety of presenting signs –Varying degree of respiratory distress –Lethargy, poor feeding –Apnea –Temperature instability High or low CXR: Can look like anything! –Mild focal opacities –Pleural effusion(s) –Complete white-out –Normal

30 Pneumonia: Epidemiology Hematogenous vs. aspiration acquisition Antenatal, perinatal, or postnatally acquired Common organisms: –Antenatal: rubella, CMV, HSV, adenovirus, Toxoplasma gondii, Treponema pallidum, Mycobacterium tuberculosis, Listeria monocytogenes, Varicella zoster and others –Perinatal: GBS, E. coli, Klebsiella, Chlamydia trachomatis –Postnatal: adenovirus, RSV, Streptococcus, Staphylococcus, gram negative enterics

31 Congenital Pneumonia: Typical Course Transient oxygen need Gradual resolution of tachypnea Antibiotic (ampicillin, gentamicin) therapy 5-7 days unless complicated by sepsis or for specific organism requiring longer courses of therapy


33 Other Pulmonary Causes of Respiratory Distress

34 Congenital Diaphragmatic Hernia

35 Other Pulmonary Causes of Respiratory Distress Esophageal atresia –Tracheoesophageal fistula

36 Other Pulmonary Causes of Respiratory Distress Congenital Cystic Adenomatoid Malformation (CCAM) Pulmonary sequestrations

37 Other Pulmonary Causes of Respiratory Distress Pneumothorax Neopix (

38 Non-Pulmonary Causes of Respiratory Distress: Congenital Heart Disease

39 Congenital Heart Disease Cyanotic –Transposition of the great arteries –Total anomalous pulmonary venous return –Tricuspid atresia –Tetralogy of Fallot –Truncus arteriosus –Pulmonary atresia –Severe CHF –Ebsteins anomaly –Double outlet right ventricle Acyanotic –Hypoplastic left heart syndrome –Interrupted aortic arch –Critical aortic stenosis –Patent ductus arteriosus –VSD/ASD –AV canal defect –Coarctation of the aorta* –Valvular defects * May present as cyanotic or acyanotic

40 Congenital Heart Disease Presenting features –Murmur +/ –Tachypnea –Cyanosis –Active precordium –Gallop rhythm –Hypoperfusion Acidosis? –Weak pulses –Hepatomegaly CXR –Heart size/shape Ebsteins anomaly Tetralogy of Fallot CHF –Abnormal lung vascularity Increased Decreased Echocardiogram EKG

41 Differentiating CHD from Pulmonary Disease Aly H. Pediatrics in Review (2004)

42 Management of the Newborn with Respiratory Distress

43 Initial Assessment: ABCs First: –Airway –Breathing –Circulation Next: –Stabilize –Gather data –Generate DDx Finally: –Consult? –Manage or Transfer

44 Initial Assessment, continued Identify life-threatening conditions that require prompt support –Inadequate or obstructed airway Gasping Choking Stridor –Inadequate oxygenation Cyanosis –Central vs. peripheral –Inadequate ventilation Tachypnea Grunting Nasal flaring Retractions –Inadequate perfusion Pallor Capillary refill

45 Clues from the History? Prolonged maternal rupture of membranes? Maternal GBS status? Maternal fever? Fetal distress? Meconium? Onset of respiratory distress? –Immediate? –Delayed?

46 Objective Data Physical exam findings: –Breath sounds –Stridor –Severity Laboratory data: –CBC w/ differential –Glucose –Blood gas –Blood culture –CXR –Hyperoxia test?

47 Management Supplemental oxygen: –Blow by –Head box –Nasal cannula –Face mask Monitoring –HR, RR –Pulse ox How long? –2 hrs? –4 hrs? –Longer? NPO

48 Hermansen CL, Lorah KN. American Family Physician

49 Management Infants with TTN and no sepsis risk factors likely just need support and observation. Infants with possible meconium aspiration, RDS, sepsis or pneumonia require a sepsis evaluation with blood culture, cbc and IV antibiotics x 48hrs and repeat CXR(s). Unclear risk factors or presentation? –Undertake sepsis evaluation

50 So when to transport?! It depends… –Failure to resolve in 2-4 hrs –Worsening condition Perfusion Oxygen needs Distress –Staff ability/comfort/availability IV access Airway –Any suspicion of cardiac disease

51 Take-Home Points Respiratory distress is common! Most do well with little intervention. Short differential dx When to transport is up to you! –Every situation is unique Help is just a phone call away!

52 How to Arrange Transport? Neonatologist on-call (In-house 24/7) –St. Paul NICU: (800) (651) –Minneapolis NICU: (800) (612) Transport team –Centralized Childrens Neonatal Transport Team in 2010 Air –Helicopter –Fixed-wing plane Ground

53 References Aly H. Respiratory disorders in the newborn: Identification and diagnosis. Pediatrics in Review 2004;25: Guglani L, Lakshminrusimha S, Ryan RM. Transient tachypnea of the newborn. Pediatrics in Review 2008;29:e59-e65. Hermansen CL, Lorah KN. Respiratory distress in the newborn. American Family Physician 2007;76: Additional suggested reading: Fidel-Rimon O, Shinwell ES. Respiratory distress in the term and near-term infant. NeoReviews 2005;6:e289-e296. Suggested resources: NRP Program, AAP/AHA S.T.A.B.L.E. Program

54 Were online! Provider resources Family resources Meet our neonatologists Articles NICU profiles

55 Thank You!

Download ppt "Mark Bergeron, MD, MPH Associates in Newborn Medicine, PA, St. Paul Assistant Professor, Pediatrics, University of Minnesota Medical School TTN vs. TTT."

Similar presentations

Ads by Google