Download presentation

Presentation is loading. Please wait.

Published byIzabella Lucy Modified over 2 years ago

1

2
Importance of the LNA

3
Friis Formula

4
Importance of the LNA Friis Formula Digital Electronics CMOS LNA X Low Cost High Integration Integration With Digital IC Larger Parasitic Capisitance

5
Importance of the LNA Friis Formula Digital Electronics CMOS LNA X Low Cost High Integration Integration With Digital IC Larger Parasitic Capisitance RF Hexagon

6
Why Inductive Degenerated LNA? 2-Port Noise Theory

7
Why Inductive Degenerated LNA? 2-Port Noise Theory

8
Why Inductive Degenerated LNA? 2-Port Noise Theory CMOS small signal equivalent

9
Why Inductive Degenerated LNA? 2-Port Noise Theory CMOS small signal equivalent Thermal Noise Contribution

10
Why Inductive Degenerated LNA? 2-Port Noise Theory CMOS small signal equivalent Thermal Noise Contribution

11
Why Inductive Degenerated LNA? 2-Port Noise Theory CMOS small signal equivalent Thermal Noise Contribution X Power Matching

12
Inductive Degenerated LNA Bond Wire Inductance Inductive Source Degeneration Input Power Matching

13
Inductive Degenerated LNA Bond Wire Inductance Inductive Source DegenerationSmall Signal Equivalent Input Power Matching

14
Inductive Degenerated LNA Bond Wire Inductance Inductive Source DegenerationSmall Signal Equivalent Power Matching Input Power Matching

15
Inductive Degenerated LNA Bond Wire Inductance Inductive Source DegenerationSmall Signal Equivalent Power Matching Input Power Matching

16
Inductive Degenerated LNA Bond Wire Inductance Inductive Source DegenerationSmall Signal Equivalent Power Matching Input Power Matching

17
Definitions Basic Equation of MOS Drain

18
Definitions Basic Equation of MOS Drain

19
Definitions Basic Equation of MOS Drain

20
Definitions Basic Equation of MOS Drain

21
Definitions Basic Equation of MOS Drain Long Channel Short Channel

22
Inductive Specified Technique 1 st step: Setting the value of L s

23
Inductive Specified Technique 1 st step: Setting the value of L s 2 nd step: Finding the value of ω t.Ls From Impendance Matching:

24
Inductive Specified Technique 3 rd step: Finding the optimum Q s 1 st step: Setting the value of L s 2 nd step: Finding the value of ω t.Ls From Impendance Matching:

25
Inductive Specified Technique 3 rd step: Finding the optimum Q s 1 st step: Setting the value of L s 2 nd step: Finding the value of ω t.Ls 4 th step: Finding the value of L g From Impendance Matching:

26
Inductive Specified Technique 3 rd step: Finding the optimum Q s 1 st step: Setting the value of L s 2 nd step: Finding the value of ω t.Ls 4 th step: Finding the value of L g 5 th step: Finding the optimum C gs From Impendance Matching:

27
Inductive Specified Technique 6 th step: Finding the optimum devices width W opt,Ls

28
Inductive Specified Technique 6 th step: Finding the optimum devices width W opt,Ls 7 th step: Finding the optimum devices transconductance g m.opt.Ls From Impendance Matching:

29
Inductive Specified Technique 6 th step: Finding the optimum devices width W opt,Ls 7 th step: Finding the optimum devices transconductance g m.opt.Ls From Impendance Matching: 8 th step: Finding the optimum ρ and V od !

30
Inductive Specified Technique 6 th step: Finding the optimum devices width W opt,Ls 7 th step: Finding the optimum devices transconductance g m.opt.Ls From Impendance Matching: 8 th step: Finding the optimum ρ and V od ! 9 th step: Finding the current consumption I D.Ls

31
Current Specified Technique 1 st step: Setting the current consumption I D

32
Current Specified Technique 1 st step: Setting the current consumption I D 2 nd step: Finding the optimum ρ and V od

33
Current Specified Technique 1 st step: Setting the current consumption I D 2 nd step: Finding the optimum ρ and V od 3 nd step: Finding the optimum Q s From 2 nd Step:

34
Current Specified Technique 1 st step: Setting the current consumption I D 2 nd step: Finding the optimum ρ and V od 3 nd step: Finding the optimum Q s 4 th step: Finding the optimum device width W opt,I From 2 nd Step: From 3 rd Step & Impendance Matching:

35
Current Specified Technique 1 st step: Setting the current consumption I D 2 nd step: Finding the optimum ρ and V od 3 nd step: Finding the optimum Q s 4 th step: Finding the optimum device width W opt,I 5 nd step: Finding the value of ω t.I From 2 nd Step: From 3 rd Step & Impendance Matching: From 2 nd Step:

36
Current Specified Technique 6 th step: Finding the optimum device transconductance g m.opt.I From 2 nd, 3 rd Step & Impendance Matching:

37
Current Specified Technique 6 th step: Finding the optimum device transconductance g m.opt.I From 2 nd, 3 rd Step & Impendance Matching: 7 th step: Finding the optimum C gs From 5 th, 6 th Step :

38
Current Specified Technique 6 th step: Finding the optimum device transconductance g m.opt.I From 2 nd, 3 rd Step & Impendance Matching: 7 th step: Finding the optimum C gs From 5 th, 6 th Step : From 6 th, 7 th Step & Impendance Matching: 8 th step: Finding the optimum L s

39
Current Specified Technique 6 th step: Finding the optimum device transconductance g m.opt.I From 2 nd, 3 rd Step & Impendance Matching: 7 th step: Finding the optimum C gs From 5 th, 6 th Step : From 6 th, 7 th Step & Impendance Matching: 8 th step: Finding the optimum L s 9 th step: Finding the optimum L g From 6 th, 7 th Step & Impendance Matching:

40
Comparison Results Inductive Specified Technique

41
Comparison Results Inductive Specified Technique

42
Comparison Results Inductive Specified Technique Parameters:

43
Comparison 1.6 GHz V od =120mV I D = 1.7mA Inductive Specified Technique

44
Comparison Results Inductive Specified 2.5 GHz V od =120mV I D = 1.1mA

45
Comparison Results Inductive Specified 5.5 GHz V od =120mV I D = 0.5mA

46
Comparison Results Inductive Specified Technique V od 150 mV

47
Comparison Results Inductive Specified 1.6 GHz V od =138mV I D = 2.4mA

48
Comparison Results Inductive Specified 2.5 GHz V od =138mV I D = 1.5mA

49
Comparison Results Inductive Specified 5.5 GHz V od =138mV I D = 0.7mA

50
Comparison Results Inductive Specified Technique V od 150 mV

51
Comparison Results Inductive Specified 1.6 GHz V od =162mV I D = 3.2mA

52
Comparison Results Inductive Specified 2.5 GHz V od =162mV I D = 2.1mA

53
Comparison Results Inductive Specified 5.5 GHz V od =162mV I D = 0.7mA

54
Comparison Results Inductive Specified Technique V od 150 mV

55
Comparison Results Inductive Specified Technique V od 150 mV

56
Comparison Results Inductive Specified Technique V od 150 mV

57
Comparison Results Inductive Specified Technique V od 150 mV

58
Comparison Results Inductive Specified Technique V od 150 mV

59
Comparison Results Inductive Specified Technique V od 150 mV

60
Comparison Results Inductive Specified Technique L s = 1.2nH NF min = 6.1dB I D = 0.9mA

61
Comparison Results Inductive Specified Technique L s = 1nH NF min = 5.6dB I D = 1.4mA

62
Comparison Results Inductive Specified Technique L s = 0.8nH NF min = 5dB I D = 2.2mA

63
Comparison Results Inductive Specified Technique L s = 0.6nH NF min = 4dB I D = 4mA

64
Comparison Results Inductive Specified Technique NF min IDID

65
Comparison Results Inductive Specified Technique NF min IDID

66
Comparison Results Inductive Specified Technique NF min IDID

67
Comparison Results Inductive Specified Technique NF min IDID IDID LLSLS

68
Comparison Results Current Specified Technique

69
Comparison Results Current Specified Technique

70
Comparison Results Current Specified Technique Parameters:

71
Comparison Results Current Specified 1.6 GHz V od =60mVL S =3.1nH

72
Comparison Results Current Specified 2.5 GHz V od =76mVL S =2.5nH

73
Comparison Results Current Specified 5.5 GHz V od =112mVL S =1.7nH

74
Comparison Results Current Specified 1.6 GHz V od =85mVL S =2.2nH

75
Comparison Results Current Specified 2.5 GHz V od =107mVL S =1.7nH

76
Comparison Results Current Specified 5.5 GHz V od =158mVL S =1.2nH

77
Comparison Results Current Specified Technique

78
Comparison Results Current Specified Technique V od,opt 150mV3nH L S 0.5nH

79
Comparison Results Current Specified Technique NF min IDID

80
Comparison Results Current Specified Technique NF min IDID

81
Comparison Results Current Specified Technique NF min IDID IDID LLSLS

82
Conclusion Inductive Specified Technique QsQs LsLs ω t.Ls LgLg C gs W opt,Ls g m.opt.Ls ρI D.Ls

83
Conclusion Inductive Specified Technique Current Specified Technique QsQs LsLs ω t.Ls LgLg C gs W opt,Ls g m.opt.Ls ρI D.Ls QsQs IDID pLgLg C gs W opt,I g m.opt.I L S,opt,I ω t.I

84
Conclusion Inductive Specified Technique Current Specified Technique QsQs LsLs ω t.Ls LgLg C gs W opt,Ls g m.opt.Ls ρI D.Ls QsQs IDID pLgLg C gs W opt,I g m.opt.I L S,opt,I ω t.I Same Results for Same Numbers from the two techniques

85
Conclusion Inductive Specified Technique Current Specified Technique QsQs LsLs ω t.Ls LgLg C gs W opt,Ls g m.opt.Ls ρI D.Ls QsQs IDID pLgLg C gs W opt,I g m.opt.I L S,opt,I ω t.I Same Results for Same Numbers from the two techniques Noise minimization for different values than those for Power Matching X

86
Conclusion Inductive Specified Technique Current Specified Technique QsQs LsLs ω t.Ls LgLg C gs W opt,Ls g m.opt.Ls ρI D.Ls QsQs IDID pLgLg C gs W opt,I g m.opt.I L S,opt,I ω t.I Same Results for Same Numbers from the two techniques Future Work: Work for Linearity Include all the theory in a toolkit for giving Guidelines Noise minimization for different values than those for Power Matching X

87
References [1] Hashemi, H. and Hajimiri A., Concurrent multiband low-noise amplifiers-theory, design and applications, IEEE Trans. Mircrowave theory and techniques,52(1), pp.288– 301, [2] Lee, T.H. The design of CMOS Radio Frequency Integrated Circuits., Cambridge Univ. Press, Cambridge, [3] Voinigescu, S. P., Maliepaard, M.C., Showell, J.L., Babcock, G.E., Marchesan, D., Schroter, M., Schvan, P. and Harame, D.L. A scalable high-frequency noise model for bipolar transistors with application optimal transistor sizing for low-noise amplifier design, IEEE J. Solid-State Circuits,32(9), pp.1430–1439, [4] Shaeffer, D. K. and Lee, T.H., A 1.5 V, 1.5 GHz CMOS low noise amplifier, IEEE J. Solid-State Circuits,32(5),745–758,1997. [5] Andreani P. Sjöland H., Noise optimization of an inductively degenerated CMOS low noise amplifier, IEEE Trans. Circuits Syst., 48, pp.835–841, Sept

88
Thank you for you attention !

Similar presentations

© 2016 SlidePlayer.com Inc.

All rights reserved.

Ads by Google