Presentation is loading. Please wait.

Presentation is loading. Please wait.

Importance of the LNA. Importance of the LNA Importance of the LNA Friis’ Formula.

Similar presentations


Presentation on theme: "Importance of the LNA. Importance of the LNA Importance of the LNA Friis’ Formula."— Presentation transcript:

1

2 Importance of the LNA

3 Importance of the LNA Friis’ Formula

4 Importance of the LNA X Friis’ Formula Digital Electronics CMOS LNA
Low Cost High Integration Integration With Digital IC X Larger Parasitic Capisitance

5 Importance of the LNA X Friis’ Formula RF Hexagon
Digital Electronics CMOS LNA Low Cost High Integration Integration With Digital IC X Larger Parasitic Capisitance

6 Why Inductive Degenerated LNA?
2-Port Noise Theory

7 Why Inductive Degenerated LNA?
2-Port Noise Theory

8 CMOS small signal equivalent
Why Inductive Degenerated LNA? 2-Port Noise Theory CMOS small signal equivalent

9 Why Inductive Degenerated LNA?
2-Port Noise Theory CMOS small signal equivalent Thermal Noise Contribution

10 Why Inductive Degenerated LNA?
2-Port Noise Theory CMOS small signal equivalent Thermal Noise Contribution

11 Why Inductive Degenerated LNA?
2-Port Noise Theory CMOS small signal equivalent Thermal Noise Contribution Power Matching X

12 Inductive Source Degeneration
Inductive Degenerated LNA Inductive Source Degeneration Input Power Matching Bond Wire Inductance

13 Inductive Degenerated LNA
Inductive Source Degeneration Small Signal Equivalent Input Power Matching Bond Wire Inductance

14 Inductive Degenerated LNA
Inductive Source Degeneration Small Signal Equivalent Input Power Matching Bond Wire Inductance Power Matching

15 Inductive Degenerated LNA
Inductive Source Degeneration Small Signal Equivalent Input Power Matching Bond Wire Inductance Power Matching

16 Inductive Degenerated LNA
Inductive Source Degeneration Small Signal Equivalent Input Power Matching Bond Wire Inductance Power Matching

17 Basic Equation of MOS Drain
Definitions Basic Equation of MOS Drain

18 Basic Equation of MOS Drain
Definitions Basic Equation of MOS Drain

19 Basic Equation of MOS Drain
Definitions Basic Equation of MOS Drain

20 Basic Equation of MOS Drain
Definitions Basic Equation of MOS Drain

21 Basic Equation of MOS Drain
Definitions Basic Equation of MOS Drain Long Channel Short Channel

22 Inductive Specified Technique
1st step: Setting the value of Ls

23 Inductive Specified Technique
1st step: Setting the value of Ls 2nd step: Finding the value of ωt.Ls From Impendance Matching:

24 Inductive Specified Technique
1st step: Setting the value of Ls 2nd step: Finding the value of ωt.Ls From Impendance Matching: 3rd step: Finding the optimum Qs

25 Inductive Specified Technique
1st step: Setting the value of Ls 2nd step: Finding the value of ωt.Ls From Impendance Matching: 3rd step: Finding the optimum Qs 4th step: Finding the value of Lg From Impendance Matching:

26 Inductive Specified Technique
1st step: Setting the value of Ls 2nd step: Finding the value of ωt.Ls From Impendance Matching: 3rd step: Finding the optimum Qs 4th step: Finding the value of Lg From Impendance Matching: 5th step: Finding the optimum Cgs From Impendance Matching:

27 Inductive Specified Technique
6th step: Finding the optimum device’s width Wopt,Ls

28 Inductive Specified Technique
6th step: Finding the optimum device’s width Wopt,Ls 7th step: Finding the optimum device’s transconductance gm.opt.Ls From Impendance Matching:

29 ! Inductive Specified Technique
6th step: Finding the optimum device’s width Wopt,Ls 7th step: Finding the optimum device’s transconductance gm.opt.Ls From Impendance Matching: 8th step: Finding the optimum ρ and Vod !

30 ! Inductive Specified Technique
6th step: Finding the optimum device’s width Wopt,Ls 7th step: Finding the optimum device’s transconductance gm.opt.Ls From Impendance Matching: 8th step: Finding the optimum ρ and Vod ! 9th step: Finding the current consumption ID.Ls

31 Current Specified Technique
1st step: Setting the current consumption ID

32 Current Specified Technique
1st step: Setting the current consumption ID 2nd step: Finding the optimum ρ and Vod

33 Current Specified Technique
1st step: Setting the current consumption ID 2nd step: Finding the optimum ρ and Vod 3nd step: Finding the optimum Qs From 2nd Step:

34 Current Specified Technique
1st step: Setting the current consumption ID 2nd step: Finding the optimum ρ and Vod 3nd step: Finding the optimum Qs From 2nd Step: 4th step: Finding the optimum device width Wopt,I From 3rd Step & Impendance Matching:

35 Current Specified Technique
1st step: Setting the current consumption ID 2nd step: Finding the optimum ρ and Vod 3nd step: Finding the optimum Qs From 2nd Step: 4th step: Finding the optimum device width Wopt,I From 3rd Step & Impendance Matching: 5nd step: Finding the value of ωt.I From 2nd Step:

36 Current Specified Technique
6th step: Finding the optimum device transconductance gm.opt.I From 2nd , 3rd Step & Impendance Matching:

37 Current Specified Technique
6th step: Finding the optimum device transconductance gm.opt.I From 2nd , 3rd Step & Impendance Matching: 7th step: Finding the optimum Cgs From 5th , 6th Step :

38 Current Specified Technique
6th step: Finding the optimum device transconductance gm.opt.I From 2nd , 3rd Step & Impendance Matching: 7th step: Finding the optimum Cgs From 5th , 6th Step : 8th step: Finding the optimum Ls From 6th , 7th Step & Impendance Matching:

39 Current Specified Technique
6th step: Finding the optimum device transconductance gm.opt.I From 2nd , 3rd Step & Impendance Matching: 7th step: Finding the optimum Cgs From 5th , 6th Step : 8th step: Finding the optimum Ls From 6th , 7th Step & Impendance Matching: 9th step: Finding the optimum Lg From 6th , 7th Step & Impendance Matching:

40 Comparison Results Inductive Specified Technique

41 Comparison Results Inductive Specified Technique

42 Comparison Results Inductive Specified Technique Parameters:

43 Comparison Results Inductive Specified Technique @ 1.6 GHz ID= 1.7mA
Vod=120mV

44 Comparison Results Inductive Specified Technique @ 2.5 GHz ID= 1.1mA
Vod=120mV

45 Comparison Results Inductive Specified Technique @ 5.5 GHz ID= 0.5mA
Vod=120mV

46 Comparison Results Inductive Specified Technique Vod ≤ 150 mV

47 Comparison Results Inductive Specified Technique @ 1.6 GHz ID= 2.4mA
Vod=138mV

48 Comparison Results Inductive Specified Technique @ 2.5 GHz ID= 1.5mA
Vod=138mV

49 Comparison Results Inductive Specified Technique @ 5.5 GHz ID= 0.7mA
Vod=138mV

50 Comparison Results Inductive Specified Technique Vod ≤ 150 mV

51 Comparison Results Inductive Specified Technique @ 1.6 GHz ID= 3.2mA
Vod=162mV

52 Comparison Results Inductive Specified Technique @ 2.5 GHz ID= 2.1mA
Vod=162mV

53 Comparison Results Inductive Specified Technique @ 5.5 GHz ID= 0.7mA
Vod=162mV

54 Comparison Results Inductive Specified Technique Vod ≥ 150 mV

55 Comparison Results Inductive Specified Technique Vod ≥ 150 mV

56 Comparison Results Inductive Specified Technique Vod ≥ 150 mV

57 Comparison Results Inductive Specified Technique Vod ≥ 150 mV

58 Comparison Results Inductive Specified Technique Vod ≥ 150 mV

59 Comparison Results Inductive Specified Technique Vod ≥ 150 mV

60 Comparison Results Inductive Specified Technique Ls = 1.2nH ID= 0.9mA
NFmin= 6.1dB

61 Comparison Results Inductive Specified Technique Ls = 1nH ID= 1.4mA
NFmin= 5.6dB

62 Comparison Results Inductive Specified Technique Ls = 0.8nH ID= 2.2mA
NFmin= 5dB

63 Comparison Results Inductive Specified Technique Ls = 0.6nH ID= 4mA
NFmin= 4dB

64 Comparison Results Inductive Specified Technique ID NFmin

65 Comparison Results Inductive Specified Technique ID NFmin

66 Comparison Results Inductive Specified Technique ID NFmin

67 Comparison Results Inductive Specified Technique ID NFmin L LS ID

68 Comparison Results Current Specified Technique

69 Comparison Results Current Specified Technique

70 Comparison Results Current Specified Technique Parameters:

71 Comparison Results Current Specified Technique @ 1.6 GHz LS=3.1nH
Vod=60mV

72 Comparison Results Current Specified Technique @ 2.5 GHz LS=2.5nH
Vod=76mV

73 Comparison Results Current Specified Technique @ 5.5 GHz LS=1.7nH
Vod=112mV

74 Comparison Results Current Specified Technique @ 1.6 GHz LS=2.2nH
Vod=85mV

75 Comparison Results Current Specified Technique @ 2.5 GHz LS=1.7nH
Vod=107mV

76 Comparison Results Current Specified Technique @ 5.5 GHz LS=1.2nH
Vod=158mV

77 Comparison Results Current Specified Technique

78 Comparison Results Current Specified Technique Vod,opt ≥ 150mV
3nH ≥ LS ≥ 0.5nH

79 Comparison Results Current Specified Technique ID NFmin

80 Comparison Results Current Specified Technique ID NFmin

81 Comparison Results Current Specified Technique ID NFmin L LS ID

82 Conclusion Inductive Specified Technique Ls ωt.Ls Qs Lg Cgs Wopt,Ls
gm.opt.Ls ρ ID.Ls

83 Conclusion Inductive Specified Technique Ls ωt.Ls Qs Lg Cgs Wopt,Ls
gm.opt.Ls ρ ID.Ls Current Specified Technique ID p Qs Wopt,I ωt.I gm.opt.I Cgs LS,opt,I Lg

84 Conclusion Inductive Specified Technique Ls ωt.Ls Qs Lg Cgs Wopt,Ls
gm.opt.Ls ρ ID.Ls Current Specified Technique ID p Qs Wopt,I ωt.I gm.opt.I Cgs LS,opt,I Lg Same Results for Same Numbers from the two techniques

85 Conclusion X Inductive Specified Technique Ls ωt.Ls Qs Lg Cgs Wopt,Ls
gm.opt.Ls ρ ID.Ls Current Specified Technique ID p Qs Wopt,I ωt.I gm.opt.I Cgs LS,opt,I Lg Same Results for Same Numbers from the two techniques X Noise minimization for different values than those for Power Matching

86 Conclusion X Future Work: Inductive Specified Technique Ls ωt.Ls Qs Lg
Cgs Wopt,Ls gm.opt.Ls ρ ID.Ls Current Specified Technique ID p Qs Wopt,I ωt.I gm.opt.I Cgs LS,opt,I Lg Same Results for Same Numbers from the two techniques X Noise minimization for different values than those for Power Matching Future Work: Work for Linearity Include all the theory in a toolkit for giving Guidelines

87 References [1] Hashemi, H. and Hajimiri A., “Concurrent multiband low-noise amplifiers-theory, design and applications,” IEEE Trans. Mircrowave theory and techniques,52(1), pp.288–301, 2002. [2] Lee, T.H. The design of CMOS Radio Frequency Integrated Circuits., Cambridge Univ. Press, Cambridge, 1998. [3] Voinigescu, S. P., Maliepaard, M.C., Showell, J.L., Babcock, G.E., Marchesan, D., Schroter, M., Schvan, P. and Harame, D.L. “A scalable high-frequency noise model for bipolar transistors with application optimal transistor sizing for low-noise amplifier design,” IEEE J. Solid-State Circuits,32(9), pp.1430–1439, 1997. [4] Shaeffer, D. K. and Lee, T.H., “A 1.5 V, 1.5 GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits,32(5),745–758,1997. [5] Andreani P. Sjöland H., “Noise optimization of an inductively degenerated CMOS low noise amplifier,” IEEE Trans. Circuits Syst., 48, pp.835–841, Sept

88 Thank you for you attention !


Download ppt "Importance of the LNA. Importance of the LNA Importance of the LNA Friis’ Formula."

Similar presentations


Ads by Google