Presentation is loading. Please wait.

Presentation is loading. Please wait.

Research on Reconfigurable Computing Using Impulse C Carmen Li Shen Mentor: Dr. Russell Duren February 1, 2008.

Similar presentations


Presentation on theme: "Research on Reconfigurable Computing Using Impulse C Carmen Li Shen Mentor: Dr. Russell Duren February 1, 2008."— Presentation transcript:

1 Research on Reconfigurable Computing Using Impulse C Carmen Li Shen Mentor: Dr. Russell Duren February 1, 2008

2 Presentation Overview Background Information Introduction Impulse C Current Work Conclusion & Future Research Questions

3 Background Information Reconfigurable computing Field Programmable Gate Arrays (FPGAs) Hardware Description Languages (HDLs): –Verilog –VHDL C++ and C-based software programming languages: –System C –Impulse C

4 Reconfigurable Computing Employing programmable logic devices where the hardware-based logic itself is being modified Reprogram hardware vs. modifying the program that use a fixed hardware configuration Programming FPGAs vs. Von Neumann Computers –Reconnecting internal gates to modify the hardware –The hw is optimized to perform one function –Vs. changing software running on a processor Image provided by: http://www.fhpca.org/images/Maxwell_small.jpg

5 Field Programmable Gate Array Custom Circuitry μProc RAM I/O Microprocessor User I/O TCP/IP Control & Test Benches Custom Circuitry Complex calculations (e.g. NN, DSP) FPGA Image provided by: http://www.nuhorizons.com/products/NewProducts/POQ13/xilinx.html

6 SRC-6e Hardware Architecture Features: 2 XC2V6000 FPGA 288 MACs, BRAMs 2 Pentium 3 24MB of SRAM 64-bit ports Cost ~ $300,000 Intel® μP L2 MIOC PCICommon Memory SNAPSNAP Controller On-Board Memory (24 MB) FPGA Intel® μP L2 μP Board FPGA 6x 800 MB/s MAP Chain Port 800 MB/s 315/195 MB/s Chain Port 800 MB/s

7 XUP Virtex II Pro Platform Features: XC2VP30 FPGA 136 MACs, BRAMs 2 PowerPC 256 MB DDR SDRAM 10/100 Ethernet SATA connectors Serial, JTAG, audio, video, USB, etc. ports Cost ~ $300 - $1,600

8 Research Our research: –Impulse C –Multiple FPGAs Methodology: –Implement a calculation- intensive program –Compare to previous work and the SRC-6e Image provided by: http://www.gamedev.net/reference/programming/features/vehiclenn/figure1.png Willis Troy Dr. Eisenbarth Dr. Duren

9 Neural Network Trained network 27 inputs 3 Hidden Layers (with 40 50 & 70 nodes) 1200 outputs Additions, multiplication, squashing

10 Impulse C C-language development tool FPGA-accelerated computing Function library for parallel programming fully compatible with ANSI C CoDeveloper Tools Mixed software/hardware Cost ~ 3,000 Image provided by: http://www.ilink.co.jp/public/img/product/impulse/imp-c/flow.jpg

11 Impulse C Data movement via streams and shared memory Shared memory tradeoff: large but slow –Memory accessed via OPB bus (opb2plb bridge) Floating point implementation supported Customized instructions –xil_printf (2,953 bytes) vs printf (51,788 bytes) –Does not support type real numbers (floating point) or long-long types (64 bit)

12 Impulse C to Bitstream Build Simulation Executable Launch ANSI-C Simulation Executable Generate HDL select a platform target Export Generated Hardware Export Generated Software Xilinx Platform Studio Project (EDK)

13 Image Filter DMA Example

14 Current Implementation Inputs & 3 Hidden Layers 600 Output Nodes Neural Network

15 Big_NeuralNet_sw.c Software Processes Memory Object

16 Big_NeuralNet_hw.c Hardware Process Configuration Function

17 Sigmoid function y(x) = -y0”*(x – x0)2 + y0’*(x – x0) + y0

18 Projects Comparison Similarities Reconfigurable Computing Neural Network and Weights FPGAs Differences Implementation using VHDL vs. C Fixed point vs. Floating point Platforms / Architectures

19 Timing Results for Neural Network Solutions ArchitectureLanguageExecution Time PC – Pentium 4C280 µs SRC-6E Carte C (parallel)572.55 µs VHDL (serial)1000 µs VHDL (parallel node)250 µs VHDL (parallel input)15 µs Baylor RC Cluster VHDL (1 board)15 µs VHDL (3 boards)6.7 µs Impulse C (3 boards)TBD Impulse C (16 boards)TBD 2x

20 Conclusion & Future Work Reconfigurable Computing SRC-6e vs. XUP boards architectures NN Calculations & Timing Results Explore different levels of parallelism across multiple FPGA boards using multiple communication schemes Ethernet, MPI, SATA Interfaces RC cluster of Virtex II PRO Willis Troy Dr. Eisenbarth Dr. Duren

21 Acknowledgements Dr. Russell Duren Dr. Steven Eisenbarth Willis Troy

22 Questions


Download ppt "Research on Reconfigurable Computing Using Impulse C Carmen Li Shen Mentor: Dr. Russell Duren February 1, 2008."

Similar presentations


Ads by Google