Presentation is loading. Please wait.

Presentation is loading. Please wait.

Boiler efficiency Heat Engines & Boilers.

Similar presentations


Presentation on theme: "Boiler efficiency Heat Engines & Boilers."— Presentation transcript:

1 Boiler efficiency Heat Engines & Boilers

2 Contents Heat balance on boilers Efficiency determination
Loss categories Fluegas condensation principals Seasonal efficiency

3 Heat balance on boilers

4 Definition of boiler efficiency

5 Quseful = m  (hout – hin )
Direct efficiency Useful heat power can be determined from mass flow rate of heat transfer medium and from inlet and outlet enthalpy: Quseful = m  (hout – hin ) For determination of direct boiler efficiency fuel and heat transfer medium flow rate needs to be measured in addition to inlet and outlet medium pressure measurement. Direct efficiency does not give information about reasons of boiler efficiency variation. It does not give any idea how to reduce loss and increase efficiency

6 Indirect efficiency Different types of loss can be separated into two groups: Firing type losses are originated from not total or not complete combustion of the fuel, which means that unburnt combustible parts remaining after combustion end Heat exchanger type losses means that some part of generated heat by combustion goes to waste, not to useful purpose, not to heat transfer medium

7 Firing type losses

8 Loss calculation In case of oil and gas firing, when it fulfils environmental protection requirements, firing loss is neglectable. In case of solid fuel firing generally it is worth to take into account. In this case it is necessary to distinguish inlet fuel flow from actually burning, fluegas-developing fuel flow. Bfg = F  B Loss quantity can be determined from operational measurement results. Qloss = massflow  burnable content  heating value of burnable part Loss factor is given by the ratio of loss heat power and input power.  = Qloss / Qin

9 Heat exchanger type losses
Heat exchanger type loss is the common name of heat produced by combustion, but going another direction than heat transfer medium, which is actually loss. Different forms of heat exchanger type losses: fg – fluegas heat loss rad – radiation heat loss ashheat – ash physical heat loss

10 Fluegas heat loss Heat delivered to the ambient air because flue gas has higher temperature than initial or ambient one. In all of the cases this is the largest loss, which determines mainly the boiler efficiency. At an up to date boiler it is generally in between fg = % At earlier constructions it is in between fg = % When fluegas is cooled below water vapor dew-point temperature (which is generally in between 40-60C) extra heat can be gained. It can cause that overall boiler efficiency can be above 100 % in case when input heat is calculated from LHV.

11 Calculation of fluegas loss factor

12 Fluegas heat loss variation in case of fuel oil S firing

13 Gőzfejlesztők anyag és energia áramai

14 Tüzelőberendezés anyag és energia áramai

15 Hőhasznosító rész anyag és energia áramai

16 Condensation of fluegas water content
Fluegas can be considered as ideal mixture of different gas components Accoding to Dalton’s law he pressure of a mixture of gases can be defined as the summation of partial pressure of each components: When fluegas temperature drop down below saturation temperature belonging to partial pressure of water in the fluegas Partial pressure of water in the fluegas:

17 Saturation temperature and pressure values
Saturation pressure 100 C 1 bar 60 C 0.2 bar 55 C 0.157 bar 50 C 0.12 bar 45 C 0.094 bar 40 C 0.074 bar 30 C 0.042 bar 20 C 0.023 bar 10 C 0.012 bar 0 C 0 bar

18 Saturation temperature and pressure values

19 Water vapor dew point variation

20 Heating value ratio variation
Unit Lower Heating Value (LHV) Higher Heating Value (HHV) Conversion factor Natural gas kWh/m3 10,4 11,5 1,11 Liquefied natural gas 8,9 9,8 Liquefied petroleum gas 30,4 32,8 1,08 Light fuel oil kWh/l 10,0 10,6 1,06 Pellets/wood bricks kWh/kg 4,9 5,5 1,12

21 Calculation of fluegas loss factor considering condensation

22 Exhaust gas loss based on LHV in case of natural gas firing
[%]

23 Exhaust gas loss based on LHV in case of LPG firing
[%]

24 Exhaust gas loss based on LHV in case of light fuel oil firing
[%]

25 Exhaust gas loss based on LHV in case of wood firing
[%]

26 Radiation type loss Radiation type loss is called the heat transferred to the ambient air by outer surface of the boiler. The name originates from ancient boiler construction, where brick works actually radiated heat to the ambient. Nowadays this heat is transferred mainly by convection, but the name remains the same. Actual value can be calculated according to heat transfer rules considering actual insulation solution. This loss factor varies in between rad = % referring to maximal load. But the heat loss power is independent from load level, it is constant. (Qrad = const.). This cause that loss factor is in inverse proportionality with load. ( 1% loss at nominal load increases up to 5% at 20% part load)

27 Ash physical heat loss It is only in case of solid fuel firing, where bottom ash removed from fire chamber in hot condition. For loss factor determination bottom ash quantity and temperature needs to be measured

28 Comparison of direct and indirect boiler efficiency
Both methods shall give the same value. But in real some difference can be experienced because of measurement inaccuracies. Generally determination by indirect method is simpler, because fuel and heat transfer medium measurement is not needed. Furthermore indirect method gives information on waste heat distribution and can be information base of efficiency increment. Direct method cannot be used for this purpose, but it can be good control of indirect method.

29 Boiler efficiency variation at part load

30 Heating and cooling demand variation over a year in Europe

31 Load-duration curve of the heating season

32 Burning cycle and energy losses of boiler

33 Efficiency variation and assessment of seasonal efficiency

34 Summary You are already familiar with Heat balance on boilers
Efficiency determination Loss categories Fluegas condensation principals Seasonal efficiency

35 Thank You for Your Attention !


Download ppt "Boiler efficiency Heat Engines & Boilers."

Similar presentations


Ads by Google